• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面活性剂吐温20对胶硫钼矿生物浸出的促进机理

张瑞洋 卢涛 孙春宝 寇珏 魏德洲

张瑞洋, 卢涛, 孙春宝, 寇珏, 魏德洲. 表面活性剂吐温20对胶硫钼矿生物浸出的促进机理[J]. 工程科学学报, 2018, 40(7): 793-799. doi: 10.13374/j.issn2095-9389.2018.07.004
引用本文: 张瑞洋, 卢涛, 孙春宝, 寇珏, 魏德洲. 表面活性剂吐温20对胶硫钼矿生物浸出的促进机理[J]. 工程科学学报, 2018, 40(7): 793-799. doi: 10.13374/j.issn2095-9389.2018.07.004
ZHANG Rui-yang, LU Tao, SUN Chun-bao, KOU Jue, WEI De-zhou. Catalytic influence of surfactant Tween 20 on the bioleaching of Jordisite[J]. Chinese Journal of Engineering, 2018, 40(7): 793-799. doi: 10.13374/j.issn2095-9389.2018.07.004
Citation: ZHANG Rui-yang, LU Tao, SUN Chun-bao, KOU Jue, WEI De-zhou. Catalytic influence of surfactant Tween 20 on the bioleaching of Jordisite[J]. Chinese Journal of Engineering, 2018, 40(7): 793-799. doi: 10.13374/j.issn2095-9389.2018.07.004

表面活性剂吐温20对胶硫钼矿生物浸出的促进机理

doi: 10.13374/j.issn2095-9389.2018.07.004
基金项目: 

中央高校基本科研业务费资助项目(FRF-TP-17-025A1)

中国博士后科学基金资助项目(2018M631343)

详细信息
  • 中图分类号: TF111.31

Catalytic influence of surfactant Tween 20 on the bioleaching of Jordisite

  • 摘要: 为提高胶硫钼矿中钼的生物浸出效率,研究了非离子表面活性剂吐温20对氧化亚铁硫杆菌(A.ferrooxidans)的代谢活性以及胶硫钼矿生物浸出的影响,并采用X射线衍射、扫描电镜对浸出产物进行表征.研究结果表明,吐温20对A.ferrooxidans氧化Fe2+有明显的抑制作用,但对S0的氧化则表现出一定的促进作用.吐温20对胶硫钼矿生物浸出的作用表现为:低质量浓度促进,高质量浓度抑制,当其质量浓度为30 mg·L-1时,浸出40 d,Mo的浸出率由未添加时的42.21%提高至54.10%.吐温20的加入强化了浸出过程中间产物S0的生物氧化作用,提高了体系中细菌浓度,同时削弱了矿物表面生成的黄钾铁矾和单质硫的钝化作用,从而促进了胶硫钼矿的氧化与溶解.
  • [2] Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales:EXAFS evidence. Geochim Cosmochim Acta, 1996, 60(19):3631
    [7] Duncan D W, Trussell P C, Walden C C. Leaching of chalcopyrite with Thiobacillus ferrooxidans:effect of surfactants and shaking. Appl Environ Microbiol, 1964, 12(2):122
    [8] Peng A A, Liu H C, Nie Z Y, et al. Effect of surfactant Tween-80 on sulfur oxidation and expression of sulfur metabolism relevant genes of Acidithiobacillus ferrooxidans. Trans Nonferrous Met Soc China, 2012, 22(12):3147
    [10] Behera S K, Sukla L B. Microbial extraction of nickel from chromite overburdens in presence of surfactant. Trans Nonferrous Met Soc China, 2012, 22(11):2840
    [11] Zhang R Y, Wei D Z, Shen Y B, et al. Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans. Miner Eng, 2016, 95:74
    [12] Knickerbocker C, Nordstrom D K, Southam G. The role of "blebbing" in overcoming the hydrophobic barrier during biooxidation of elemental sulfur by Thiobacillus thiooxidans. Chem Geol, 2000, 169(3-4):425
    [13] Tichý R, Janssen A, Grotenhuis J T C, et al. Possibilities for using biologically-produced sulphur for cultivation of Thiobacilli, with respect to bioleaching processes. Bioresour Technol, 1994, 48(3):221
    [15] Nasernejad B, Kaghazchi T, Edrisi M, et al. Bioleaching of molybdenum from low-grade copper ore. Process Biochem, 1999, 35(5):437
    [16] Daoud J, Karamanev D. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Miner Eng, 2006, 19(9):960
    [17] Pradhan N, Nathsarma K C, Rao K S, et al. Heap bioleaching of chalcopyrite:a review. Miner Eng, 2008, 21(5):355
    [18] Olson G J, Clark T R. Bioleaching of molybdenite. Hydrometallurgy, 2008, 93(1-2):10
  • 加载中
计量
  • 文章访问数:  500
  • HTML全文浏览量:  176
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-02

目录

    /

    返回文章
    返回