• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GH4169合金高温疲劳裂纹扩展的微观损伤机制

侯杰 董建新 姚志浩

侯杰, 董建新, 姚志浩. GH4169合金高温疲劳裂纹扩展的微观损伤机制[J]. 工程科学学报, 2018, 40(7): 822-832. doi: 10.13374/j.issn2095-9389.2018.07.008
引用本文: 侯杰, 董建新, 姚志浩. GH4169合金高温疲劳裂纹扩展的微观损伤机制[J]. 工程科学学报, 2018, 40(7): 822-832. doi: 10.13374/j.issn2095-9389.2018.07.008
HOU Jie, DONG Jian-xin, YAO Zhi-hao. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy[J]. Chinese Journal of Engineering, 2018, 40(7): 822-832. doi: 10.13374/j.issn2095-9389.2018.07.008
Citation: HOU Jie, DONG Jian-xin, YAO Zhi-hao. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy[J]. Chinese Journal of Engineering, 2018, 40(7): 822-832. doi: 10.13374/j.issn2095-9389.2018.07.008

GH4169合金高温疲劳裂纹扩展的微观损伤机制

doi: 10.13374/j.issn2095-9389.2018.07.008
基金项目: 

国家自然科学基金资助项目(51371023)

详细信息
  • 中图分类号: TG146.1

Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy

  • 摘要: 空气环境对高温合金在高温下的损伤行为有显著影响.为了研究标准热处理态GH4169合金在高温疲劳裂纹扩展过程中的微观损伤机制,在空气环境中进行650℃、初始应力强度因子幅ΔK=30 MPa·m1/2和应力比R=0.05的低周疲劳裂纹扩展试验.使用扫描电镜(SEM)及能谱(EDS)对试样的断口、外表面和剖面进行观察和分析.实验结果表明:疲劳主裂纹以沿晶方式萌生并扩展,随后沿晶二次裂纹出现,并且其数量和长度沿主裂纹方向逐渐增加,进入快速扩展阶段后,断口呈现韧窝组织形貌;在裂纹扩展过程中,δ相与基体的界面发生氧化,使得沿晶二次裂纹沿界面扩展并产生偏折,从而起到阻碍二次裂纹扩展的作用;试样外表面的主裂纹周围出现晶界氧化损伤区,其尺寸和晶界开裂程度沿主裂纹扩展方向逐渐增大.
  • [1] Pollock T M. Alloy design for aircraft engines. Nat Mater, 2016, 15:809
    [2] Xu J H, Huang Z W, Jiang L. Effect of heat treatment on low cycle fatigue of IN718 superalloy at the elevated temperatures. Mater Sci Eng A, 2017, 690:137
    [3] Nemeth A A N, Crudden D J, Armstrong D E J, et al. Environmentally-assisted grain boundary attack as a mechanism of embrittlement in a nickel-based superalloy. Acta Mater, 2017, 126:361
    [4] Jiang R, Reed P A S. Critical assessment 21:oxygen-assisted fatigue crack propagation in turbine disc superalloys. Mater Sci Technol, 2016, 32(5):401
    [5] Anderson M, Thielin A L, Bridier F, et al. δ phase precipitation in Inconel 718 and associated mechanical properties. Mater Sci Eng A, 2017, 679:48
    [6] Silva C, Song M, Leonard K, et al. Characterization of alloy 718 subjected to different thermomechanical treatments. Mater Sci Eng A, 2017, 691:195
    [7] Valle L C M, Araujo L S, Gabriel S B, et al. The effect of δ phase on the mechanical properties of an Inconel 718 superalloy. J Mater Eng Perform, 2013, 22(5):1512
    [8] Tarzimoghadam Z, Rohwerder M, Merzlikin S V, et al. Multi-scale and partially resolved hydrogen mapping in a Ni-Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718. Acta Mater, 2016, 109:69
    [9] Jiang R, Bull D J, Proprentner D, et al. Effects of oxygen-related damage on dwell-fatigue crack propagation in a P/M Ni-based superalloy:from 2D to 3D assessment. Int J Fatigue, 2017, 99:175
    [10] Cruchley S, Li H Y, Evans H E, et al. The role of oxidation damage in fatigue crack initiation of an advanced Ni-based superalloy. Int J Fatigue, 2015, 81:265
    [11] Osinkolu G A, Onofrio G, Marchionni M. Fatigue crack growth in polycrystalline IN718 superalloy. Mater Sci Eng A, 2003, 356(1-2):425
    [12] Smith H H, Michel D J. Effect of environment on fatigue crack propagation behavior of alloy 718 at elevated temperatures. Metall Trans A, 1986, 17:370
    [13] Evans H E, Li H Y, Bowen P. A mechanism for stress-aided grain boundary oxidation ahead of cracks. Scripta Mater, 2013, 69(2):179
    [14] Pfaendtner J A, McMahon C J. Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures-an example of dynamic embrittlement. Acta Mater, 2001, 49(16):3369
    [15] Chen Y Q, Pan S P, Zhou M Z, et al. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater Sci Eng A, 2013, 580:150
    [16] Foroozmehr F, Verreman Y, Chen J Q, et al. Effect of inclusions on fracture behavior of cast and wrought 13%Cr-4%Ni martensitic stainless steels. Eng Fract Mech, 2017, 175:262
    [17] An J L, Wang L, Liu Y, et al. The role of δ phase for fatigue crack propagation behavior in a Ni base superalloy at room temperature. Mater Sci Eng A, 2017, 684:312
    [18] Saarimaki J, Colliander M H, Moverare J J. Anisotropy effects during dwell-fatigue caused by δ-phase orientation in forged Inconel 718. Mater Sci Eng A, 2017, 692:174
    [19] Krupp U, Kane W M, Laird C, et al. Brittle intergranular fracture of a Ni-base superalloy at high temperatures by dynamic embrittlement. Mater Sci Eng A, 2004, 387-389:409
    [20] Boyd-Lee A D. Fatigue crack growth resistant microstructures in polycrystalline Ni-base superalloys for aeroengines. Int J Fatigue, 1999, 21(4):393
    [21] Jiang R, Everitt S, Lewandowski M, et al. Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes. Int J Fatigue, 2014, 62:217
    [22] Connolley T, Reed P A S, Starink M J. Short crack initiation and growth at 600℃ in notched specimens of Inconel718. Mater Sci Eng A, 2003, 340(1-2):139
  • 加载中
计量
  • 文章访问数:  500
  • HTML全文浏览量:  179
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-28

目录

    /

    返回文章
    返回