• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业海洋大气环境下阳极氧化6061铝合金的电偶腐蚀行为

王沙沙 杨浪 肖葵 黄运华 李晓刚

王沙沙, 杨浪, 肖葵, 黄运华, 李晓刚. 工业海洋大气环境下阳极氧化6061铝合金的电偶腐蚀行为[J]. 工程科学学报, 2018, 40(7): 833-841. doi: 10.13374/j.issn2095-9389.2018.07.009
引用本文: 王沙沙, 杨浪, 肖葵, 黄运华, 李晓刚. 工业海洋大气环境下阳极氧化6061铝合金的电偶腐蚀行为[J]. 工程科学学报, 2018, 40(7): 833-841. doi: 10.13374/j.issn2095-9389.2018.07.009
WANG Sha-sha, YANG Lang, XIAO Kui, HUANG Yun-hua, LI Xiao-gang. Galvanic corrosion of anodized 6061 aluminum alloy in an industrial-marine atmospheric environment[J]. Chinese Journal of Engineering, 2018, 40(7): 833-841. doi: 10.13374/j.issn2095-9389.2018.07.009
Citation: WANG Sha-sha, YANG Lang, XIAO Kui, HUANG Yun-hua, LI Xiao-gang. Galvanic corrosion of anodized 6061 aluminum alloy in an industrial-marine atmospheric environment[J]. Chinese Journal of Engineering, 2018, 40(7): 833-841. doi: 10.13374/j.issn2095-9389.2018.07.009

工业海洋大气环境下阳极氧化6061铝合金的电偶腐蚀行为

doi: 10.13374/j.issn2095-9389.2018.07.009
基金项目: 

国家重点研发计划资助项目(2016YFB0300604)

国家自然科学基金资助项目(51471033)

详细信息
  • 中图分类号: TG172.3

Galvanic corrosion of anodized 6061 aluminum alloy in an industrial-marine atmospheric environment

  • 摘要: 在青岛典型的工业海洋大气环境下,进行硼硫酸阳极氧化6061铝合金与不同表面状态的30CrMnSiNi2A结构钢偶接件的户外大气暴露试验,通过电化学测试、腐蚀产物分析、力学性能检测、断口分析等,研究了偶接件中阳极氧化6061铝合金的腐蚀规律与机理.结果表明:经1 a户外大气暴露试验后,与镀镉钛结构钢偶接的6061阳极氧化铝合金力学性能最优,其强度σb和延伸率δ分别比原始试样下降6.45%和4.39%,远优于与结构钢裸材偶接的阳极氧化6061铝合金试样(分别下降10%和62.28%),略优于未偶接试样(分别下降6.77%和10.74%).沿晶腐蚀和表面点蚀是导致阳极氧化6061铝合金力学性能下降的主要原因,最严重的沿晶腐蚀裂纹深度达150 μm.青岛大气中的硫化物不仅会侵蚀试样表面形成硫酸铝,还会浸入到晶界促进沿晶腐蚀.
  • [3] Varma S K, Andrews S, Vasquez G. Corrosive wear behavior of 2014 and 6061 aluminum alloy composites.J Mater Eng Perform, 1999, 8(1):98
    [4] Critchlow G W, Yendall K A, Bahrani D, et al. Strategies for the replacement of chromic acid anodising for the structural bonding of aluminum alloys. Int J Adhes Adhes, 2006, 26(6):419
    [9] Du X Q, Yang Q S, Chen Y, et al.Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater. Trans Nonferrous Met Soc China, 2014, 24(2):570
    [10] Li S X, Khan H, Hihara L H, et al. Marine atmospheric corrosion of Al-Mg joints by friction stir blind riveting. Corrosion, 2016, 111:793
    [11] Katkar V A, Gunasekaran G. Galvanic corrosion of AA6061 with other ship building materials in seawater.Corrosion, 2015, 72(3):400
    [12] Xiao K, Dong C F, Li J Q, et al. Study on atmospheric galvanic corrosion evaluation of magnesium alloy. Rare Met Mater Eng, 2007, 36(2):201
    [16] Vera R, Delgado D, Rosales B M. Effect of atmospheric pollutants on the corrosion of high power electrical conductors:Part 1. aluminium and AA6201 alloy. Corros Sci, 2006, 48(10):2882
    [17] Mubarok M Z, Wahab, Sutarno, et al. Effects of anodizing parameters in tartaric-sulphuric acid on coating thickness and corrosion resistance of Al 2024 T3 alloy. J Miner Mater Charact Eng, 2015, 3(3):154
    [18] Pyun S I, Moon S M, Ahn S H, et al. Effects of Cl-, NO3- and SO42- ions on anodic dissolution of pure aluminum in alkaline solution. Corros Sci, 1999, 41(4):653
    [19] Marcus P.Corrosion Mechanisms in Theory and Practice. 2nd Ed. USA:Marcel Dekker, Inc., 2002
    [20] Xiang Y, Wang Z, Xu C, et al.Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2. J Supercrit Fluids, 2011, 58(2):286
    [21] Elola A S, Otero T F, Porro A. Evolution of the pitting of aluminum exposed to the atmosphere.Corrosion, 1992, 48(10):854
    [22] Sun S Q, Zheng Q F, Li D F, et al. Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments. Corros Sci, 2009, 51(4):719
    [23] de Bonfils-Lahovary M L, Laffont L, Blanc C.Characterization of intergranular corrosion defects in a 2024 T351 aluminium alloy. Corros Sci, 2017, 119:60
    [24] Larsen M H, Walmsley J C, Lunder O, et al.Effect of excess silicon and small copper content on intergranular corrosion of 6000-series aluminum alloys. J Electrochem Soc, 2010, 157(2):C61
    [25] Li H, Mao Q Z, Wang Z X, et al. Simultaneously enhancing the tensile properties and intergranular corrosion resistance of Al-Mg-Si-Cu alloys by a thermo-mechanical treatment. Mater Sci Eng A, 2014, 617:165
  • 加载中
计量
  • 文章访问数:  480
  • HTML全文浏览量:  215
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-12

目录

    /

    返回文章
    返回