• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池安全性研究进展

王爽 杜志明 张泽林 韩志跃

王爽, 杜志明, 张泽林, 韩志跃. 锂离子电池安全性研究进展[J]. 工程科学学报, 2018, 40(8): 901-909. doi: 10.13374/j.issn2095-9389.2018.08.002
引用本文: 王爽, 杜志明, 张泽林, 韩志跃. 锂离子电池安全性研究进展[J]. 工程科学学报, 2018, 40(8): 901-909. doi: 10.13374/j.issn2095-9389.2018.08.002
WANG Shuang, DU Zhi-ming, ZHANG Ze-lin, HAN Zhi-yue. Research progress on safety of lithium-ion batteries[J]. Chinese Journal of Engineering, 2018, 40(8): 901-909. doi: 10.13374/j.issn2095-9389.2018.08.002
Citation: WANG Shuang, DU Zhi-ming, ZHANG Ze-lin, HAN Zhi-yue. Research progress on safety of lithium-ion batteries[J]. Chinese Journal of Engineering, 2018, 40(8): 901-909. doi: 10.13374/j.issn2095-9389.2018.08.002

锂离子电池安全性研究进展

doi: 10.13374/j.issn2095-9389.2018.08.002
基金项目: 

北京理工大学爆炸科学与技术国家重点实验室资助项目(ZDKT17-03)

详细信息
  • 中图分类号: X913.4;TM911.3

Research progress on safety of lithium-ion batteries

  • 摘要: 综述了近年来电解液的热稳定性影响因素、热失控过程及产物成分、单体及电池组燃爆安全性、灭火措施的研究进展.指出电解液的热稳定性受锂盐和有机溶剂的共同影响,当电池内部温度达到120℃左右时放热反应开始出现,在热量持续积累的情况下热失控将自发进行,同时产生氢气和烷烃类具有燃烧爆炸危险的气体产物.与二氧化碳和干粉类灭火剂相比,七氟丙烷和水的灭火效果较好.最后对锂离子电池的应用前景做了展望,提出了不同滥用条件下的热失控过程、热失控产物生成机理,指出开发新型电解液和寻求高效灭火介质是今后研究的方向.
  • [1] Wang Q S, Ping P, Zhao X J, et al. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources, 2012, 208:210
    [2] Rao Z H, Wang S F. A review of power battery thermal energy management. Renewable Sustainable Energy Rev, 2011, 15(9):4554
    [6] Fergus J W. Recent developments in cathode materials for lithium ion batteries. J Power Sources, 2010, 195(4):939
    [8] Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials:a review. J Power Sources, 2013, 240:66
    [9] Herrmann M. Packaging-materials review. AIP Conference Proc, 2014, 1597(1):121
    [10] De las Casas C, Li W Z. A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources, 2012, 208:74
    [14] Zhang W X, Chen X, Chen Q P, et al. Combustion calorimetry of carbonate electrolytes used in lithium ion batteries. J Fire Sci, 2015, 33(1):22
    [15] Kawamura T, Kimura A, Egashira M, et al. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J Power Sources, 2002, 104(2):260
    [16] Fu Y Y, Lu S, Shi L, et al. Combustion characteristics of electrolyte pool fires for lithium ion batteries. J Electrochem Soc, 2016, 163(9):A2022
    [17] Wang Q S, Sun J H, Chen X F, et al. Effects of solvents and salt on the thermal stability of charged LiCoO2. Mater Res Bull, 2009, 44(3):543
    [18] MacNeil D D, Dahn J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes:I. Li0.5CoO2. J Electrochem Soc, 2001, 148(11):A1205
    [19] MacNeil D D, Larcher D, Dahn J R. Comparison of the reactivity of various carbon electrode materials with electrolyte at elevated temperature. J Electrochem Soc, 1999, 146(10):3596
    [20] Spotnitz R, Franklin J. Abuse behavior of high-power lithium-ion cells. J Power Sources, 2003, 113(1):81
    [21] Biensan P, Simon B, Pérès J P, et al. On safety of lithium-ion cells. J Power Sources, 1999, 81-82:906
    [22] Mendoza-Hernandez O S, Ishikawa H, Nishikawa Y, et al. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge. J Power Sources, 2015, 280:499
    [23] Wang Q S, Zhao X J, Ye J N, et al. Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. J Therm Anal Calorim, 2016, 124(1):417
    [24] Sun Q J, Wang Q S, Zhao X J, et al. Numerical study on lithium titanate battery thermal response under adiabatic condition. Energy Convers Manage, 2015, 92:184
    [27] Chen M, Sun Q J, Li Y Q, et al. A thermal runaway simulation on a lithium titanate battery and the battery module. Energies, 2015, 8(1):490
    [28] Ohsaki T, Kishi T, Kuboki T, et al. Overcharge reaction of lithium-ion batteries. J Power Sources, 2005, 146(1-2):97
    [29] Feng X N, Sun J, Ouyang M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources, 2015, 275:261
    [31] Ping P, Wang Q S, Huang P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J Power Sources, 2015, 285:80
    [32] Huang P F, Wang Q S, Li K, et al. The combustion behavior of large scale lithium titanate battery. Sci Rep, 2015, 5:7788-1
    [33] Chen M Y, Liu J H, Lin X, et al. Combustion characteristics of primary lithium battery at two altitudes. J Therm Anal Calorim, 2016, 124(2):865
    [34] Fu Y Y, Lu S, Li K Y, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. J Power Sources, 2015, 273:216
    [35] Matsumura H, Itoh S, Matsushima K, et al. Temperature characteristics of a hybrid electric vehicle fire. SAE Int J Alternative Powertrains, 2012, 1(1):195
    [36] Takahashi M, Takeuchi M, Maeda K, et al. Comparison of fires in lithium-ion battery vehicles and gasoline vehicles. SAE Int J Passenger Cars-Electron Electrical Syst, 2014, 7(1):213
    [37] Yang H, Shen X D. Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell. J Power Sources, 2007, 167(2):515
    [38] Yang H, Zhuang G V, Ross Jr P N. Thermal stability of LiPF6, salt and Li-ion battery electrolytes containing LiPF6. J Power Sources, 2006, 161(1):573
    [39] Andersson P, Blomqvist P, Lorén A, et al. Using Fourier transform infrared spectroscopy to determine toxic gases in fires with lithium-ion batteries. Fire Mater, 2016, 40(8):999
    [40] Larsson F, Andersson P, Blomqvist P, et al. Characteristics of lithium-ion batteries during fire tests. J Power Sources, 2014, 271:414
    [41] Sturk D, Hoffmann L, Ahlberg Tidblad A. Fire tests on E-vehicle battery cells and packs. Traffic Injury Prevention, 2015, 16(Suppl 1):S159
    [42] Campion C L, Li W T, Lucht B L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J Electrochem Soc, 2005, 152(12):A2327
    [43] MacNeil D D, Dahn J R. The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures. J Electrochem Soc, 2002, 149(7):A912
    [44] Abraham D P, Roth E P, Kostecki R, et al. Diagnostic examination of thermally abused high-power lithium-ion cells. J Power Sources, 2006, 161(1):648
    [45] Somandepalli V, Marr K, Horn Q. Quantification of combustion hazards of thermal runaway failures in lithium-ion batteries. SAE Int J Alternative Powertrains, 2014, 3(1):98
    [47] Yim T, Park M S, Woo S G, et al. Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness. Nano Lett, 2015, 15(8):5059
    [48] Xu J, Lan C J, Qiao Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Appl Therm Eng, 2017, 110:883
    [51] Larsson F, Andersson P, Blomqvist P, et al. Toxic fluoride gas emissions from lithium-ion battery fires. Sci Rep, 2017, 7:10018-1
    [53] Wang Q S, Shao G Z, Duan Q L, et al. The efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire. Fire Technol, 2016, 52(2):387
    [54] Blum A, Long R T. Full-scale fire tests of electric drive vehicle batteries. SAE Int J Passenger Cars-Mechanical Syst, 2015, 8(2):565
    [55] Rao H, Huang Z X, Zhang H, et al. Study of fire tests and fire safety measures on lithium ion battery used on ships//International Conference on Transportation Information and Safety. Wuhan, 2015:865
  • 加载中
计量
  • 文章访问数:  610
  • HTML全文浏览量:  285
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-04

目录

    /

    返回文章
    返回