• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢铁冶金过程中的界面现象

程礼梅 张立峰 沈平

程礼梅, 张立峰, 沈平. 钢铁冶金过程中的界面现象[J]. 工程科学学报, 2018, 40(10): 1139-1157. doi: 10.13374/j.issn2095-9389.2018.10.001
引用本文: 程礼梅, 张立峰, 沈平. 钢铁冶金过程中的界面现象[J]. 工程科学学报, 2018, 40(10): 1139-1157. doi: 10.13374/j.issn2095-9389.2018.10.001
CHENG Li-mei, ZHANG Li-feng, SHEN Ping. Interfacial phenomena in ironmaking and steelmaking[J]. Chinese Journal of Engineering, 2018, 40(10): 1139-1157. doi: 10.13374/j.issn2095-9389.2018.10.001
Citation: CHENG Li-mei, ZHANG Li-feng, SHEN Ping. Interfacial phenomena in ironmaking and steelmaking[J]. Chinese Journal of Engineering, 2018, 40(10): 1139-1157. doi: 10.13374/j.issn2095-9389.2018.10.001

钢铁冶金过程中的界面现象

doi: 10.13374/j.issn2095-9389.2018.10.001
基金项目: 

国家自然科学基金资助项目(51725402,51504020和51704018)

详细信息
  • 中图分类号: TF4

Interfacial phenomena in ironmaking and steelmaking

  • 摘要: 从界面润湿性的角度,对一些冶炼过程中的常见界面现象进行了详细分析.对于渣的泡沫化过程,主要分析了润湿性对渣的泡沫化指数的影响;对于铁水和钢液脱硫过程,主要分析了对脱硫速率和脱硫剂的利用率以及穿透钢液速率的影响;对于钢液与熔渣对耐火材料的侵蚀过程,主要分析了对耐火材料在熔渣中的饱和溶解度、熔渣在耐火材料中的侵蚀深度以及耐火材料的侵蚀速率的影响;对于钢中夹杂物的运动过程,主要分析了对钢中夹杂物的形核、聚集、去除、空间分布等影响.同时,本文总结得出了对于这些实际冶炼过程有利的界面润湿性.
  • [1] Jakobsson A, Sichen D, Seetharaman S, et al. Interfacial phenomena in some slag-metal reactions. Metall Mater Trans B, 2000, 31(5):973
    [2] Cooper C F, Kitchener J A. The foaming of molten silicates. J Iron Steel Inst, 1959, 193:48
    [3] Swisher J H, McCabe C L. Cr2O3 as foaming agent in CaO-SiO2 slags. Trans Metall Soc AIME, 1964, 230(7):1669
    [4] Kozakevitch P, John T G. Foams and emulsions in steelmaking. JOM, 1969, 21(7):57
    [5] Sakao H, Mukai K. Interfacial phenomena in iron and steelmaking processes. Tetsu-to-Hagané, 1977, 63(3):513
    [6] Hara S, Ogino K. Slag-foaming phenomenon in pyrometallurgical processes. ISIJ Int, 1992, 32(1):81
    [7] Katayama H, Ohno T, Yamauchi M, et al. Machanism of iron oxide reduction and heat transfer in the smelting reduction process with a thick layer of slag. ISIJ Int, 1992, 32(1):95
    [8] Hara S, Kitamura M, Ogino K. The surface viscosities and the foamines of molten oxides. ISIJ Int, 1990, 30(9):714
    [9] Ghag S S, Hayes P C, Lee H G. Model development of slag foaming. ISIJ Int, 1998, 38(11):1208
    [10] Ito K, Fruehan R J. Thermodynamics of nitrogen in CaO-SiO2-Al2O3 slags and its reaction with Fe-Csat. melts. Metall Trans B, 1988, 19(3):419
    [11] Ito K, Fruehan R J. Study on the foaming of CaO-SiO2-FeO slags:Part I. Foaming parameters and experimental results. Metall Trans B, 1989, 20(4):509
    [12] Jiang R, Fruehan R J. Slag foaming in bath smelting. Metall Trans B, 1991, 22(4):481
    [13] Zhang Y, Fruehan R J. Effect of the bubble size and chemical reactions on slag foaming. Metall Mater Trans B, 1995, 26(4):803
    [14] Skupien D, Gaskell D R. The surface tensions and foaming behavior of melts in the system CaO-FeO-SiO2. Metall Mater Trans B, 2000, 31(5):921
    [15] Kim H S, Min D J, Park J H. Foaming behavior of CaO-SiO2-FeO-MgOsatd-X (X=Al2O3, MnO, P2O5, and CaF2) slags at high temperatures. ISIJ Int, 2001, 41(4):317
    [16] Lahiri A K, Seetharaman S. Foaming behavior of slags. Metall Mater Trans B, 2002, 33(3):499
    [17] Bhoi B, Jouhari A K, Ray H S, et al. Smelting reduction reactions by solid carbon using induction furnace:foaming behaviour and kinetics of FeO reduction in CaO-SiO2-FeO slag. Ironmak Steelmak, 2006, 33(3):245
    [18] Park Y, Min D J. A structural study on the foaming behavior of CaO-SiO2-MO (MO=MgO, FeO, or Al2O3) ternary slag system. Metall Mater Trans B, 2017, 48(6):3038
    [20] Lotun D, Pilon L. Physical modeling of slag foaming for various operating conditions and slag compositions. ISIJ Int, 2005, 45(6):835
    [21] Jung S M, Fruehan R J. Foaming characteristics of BOF slags. ISIJ Int, 2000, 40(4):348
    [22] Stadler S A C, Eksteen J J, Aldrich C. An experimental investigation of foaming in acidic, high FexO slags. Miner Eng, 2007, 20(12):1121
    [23] Ogino K, Nishiwaki A. Visualization of CO bubbles evolution accompanying the silica reduction reaction by X-ray fluoroscopy. Tetsu-to-Hagané, 1979, 65(14):1985
    [24] Cramb A W, Jimbo I. Calculation of the interfacial properties of liquid steel-slag systems. Steel Res Int, 1989, 60(3-4):157
    [25] Mukai K, Nakamura T, Terashima H. Slag foaming in reaction between molten slag containing iron oxide and iron of high carbon concentration. Tetsu-to-Hagané, 1992, 78(11):1682
    [26] Hong L, Hirasawa M, Sano M. Behavior of slag foaming with reduction of iron oxide in molten slags by graphite. ISIJ Int, 1998, 38(12):1339
    [27] Takeuchi E I, Kishimoto M, Mori K, et al. Rate of desulfurization of liquid iron by CaO-SiO2-Al2O3 slag and interfacial phenomena. Tetsu-to-Hagane, 1978, 64(12):1704
    [28] Lee J, Morita K. Dynamic interfacial phenomena between gas, liquid iron and solid CaO during desulfurization. ISIJ Int, 2004, 44(2):235
    [29] Lee J, Morita K. Effect of carbon and sulphur on the surface tension of molten iron. Steel Res, 2002, 73(9):367
    [30] Taniguchi Y, Seetharaman S. Interfacial phenomena among liquid iron-carbon alloy, liquid slag, and solid CaO. Metall Mater Trans B, 2012, 43(3):587
    [31] Richardson F D. Physical Chemistry of Melts in Metallurgy. Academic Press (Elsevier), 1974
    [32] Saelim A, Gaskell D R. The rates of desulfurization of liquid iron by solid CaO and CaO-saturated liquid iron oxide at 1600℃. Metall Trans B, 1983, 14(2):259
    [33] Hosohara S, Kato Y, Nakato H, et al. The effect of pressure in the atmosphere on desulfurization of hot metal and reaction mechanism with magnesium. Tetsu-to-Hagane, 2002, 88(3):129
    [34] Yang J, Okumura K, Kuwabara M, et al. Improvement of desulfurization efficiency of molten iron with magnesium vapor produced In situ by aluminothermic reduction of magnesium oxide. Metall Mater Trans B, 2003, 34(5):619
    [35] Kumar A, Chacko Z E, Malathi M, et al. Desulfurization of hot metal through in situ generation of magnesium in 30 kg molten iron bath-influence of inert gas flow rate. Steel Res Int, 2014, 85(5):927
    [36] Sun H P, Liu Y C, Lu M J. Transport phenomena and penetrability of solid particles in hot metal during lance injection. Ironmak Steelmak, 2010, 37(8):599
    [37] Sun H P, Liu Y C, Lu M J. Behaviour of Ar-1% Mg bubbles in desulfurization of hot metal by magnesium injection. Steel Res Int, 2009, 80(3):209
    [38] Engh T A. Si deoxidation of steel by injection of slags with low SiO2 activity. Scand J Metall, 1972, 1:103
    [39] Wu W, Han Z J, Hu Y B, et al. Desulfurizer desulphurization kinetics by the injection method. J Univ Sci Technol Beijing Miner Metall Mater, 2008, 15(4):375
    [41] Jansson S, Brabie V, Jönsson P. Corrosion mechanism and kinetic behaviour of MgO-C refractory material in contact with CaO-Al2O3-SiO2-MgO slag. Scand J Metall, 2005, 34(5):283
    [42] Heo S H, Lee K, Chung Y. Reactive wetting phenomena of MgO-C refractories in contact with CaO-SiO2 slag. Trans Nonferrous Met Soc China, 2012, 22(Suppl 3):S870
    [44] Chen Y. Numerical and Experimental Study of Marangoni Flow on Slag-Line Dissolution of Refractory[Dissertation]. Hamilton:McMaster University, 2011
    [45] Riaz S, Mills K C, Bain K. Experimental examination of slag/refractory interface. Ironmak Steelmak, 2002, 29(2):107
    [46] Shen P, Zhang L F, Wang Y. Wettability between liquid iron and tundish lining refractory. Metall Res Technol, 2016, 113(5):503
    [47] Seo S M, Kim D S, Paik Y H. Wetting characteristics of CaO-SiO2-Al2O3 ternary slag on refractory oxides, Al2O3, SiO2 and TiO2. Met Mater Int, 2001, 7(5):479
    [49] Siddiqi N, Bhoi B, Paramguru R K, et al. Slag-graphite wettability and reaction kinetics Part 1 Kinetics and mechanism of molten FeO reduction reaction. Ironmak Steelmak, 2000, 27(5):367
    [50] Shen P, Fujii H, Nogi K. Wettability of some refractory materials by molten SiO2-MnO-TiO2-FeOx slag. Mater Chem Phys, 2009, 114(2-3):681
    [51] Valdez M E, Uranga P, Fuchigami K, et al. Controlled undercooling of liquid iron in contact with Al2O3 substrates under varying oxygen partial pressures. Metall Mater Trans B, 2006, 37(5):811
    [52] Zhao L Y, Sahajwalla V. Interfacial phenomena during wetting of graphite/alumina mixtures by liquid iron. ISIJ Int, 2003, 43(1):1
    [53] Lee Y S, Jung S M, Min D J. Interfacial reaction between Al2O3-SiO2-C refractory and Al/Ti-killed steels. ISIJ Int, 2014, 54(4):827
    [54] Lian P F, Huang A, Gu H Z, et al. Towards prediction of local corrosion on alumina refractories driven by Marangoni convection. Ceram Int, 2018, 44(2):1675
    [55] Pötschke J, Brüggmann C. Premature wear of refractories due to marangoni-convection. Steel Res Int, 2012, 83(7):637
    [56] Mukai K, Toguri J M, Stubina N M, et al. A mechanism for the local corrosion of immersion nozzles. ISIJ Int, 1989, 29(6):469
    [58] Ueshima Y. Evaluation of local dissolution rates and wetting behaviors of solid alumina in liquid slag with the marangoni number. ISIJ Int, 2016, 56(8):1506
    [59] Chen Y, Brooks G, Nightingale S, et al. Marangoni effect in refractory slag line dissolution//Fourth International Symposium 43rd Annual Conference of Metallurgists of CIM. Hamilton, 2004:513
    [60] Beskow K, Du S C. Experimental study of the nucleation of alumina inclusions in liquid steel. ScandJ Metall, 2003, 32(6):320
    [62] Suito H, Ohta H. Characteristics of particle size distribution in early stage of deoxidation. ISIJ Int, 2006, 46(1):33
    [63] Yan P C, Guo M X, Blanpain B. In situ observation of the formation and interaction behavior of the oxide/oxysulfide inclusions on a liquid iron surface. Metall Mater Trans B, 2014, 45(3):903
    [64] Ogino K, Nogi K, Yamase O. Effects of selenium and tellurium on the surface tension of molten iron and the wettability of alumina by molten iron. ISIJ Int, 1983, 23(3):234
    [65] Zheng L C, Malfliet A, Wollants P, et al. Effect of interfacial properties on the characteristics and clustering of alumina inclusions in molten iron. ISIJ Int, 2015, 55(9):1891
    [66] Yang W, Duan H J, Zhang L F, et al. Nucleation, growth, and aggregation of alumina inclusions in steel. JOM, 2013, 65(9):1173
    [67] Kingery W D, Berg M. Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion. J Appl Phys, 1955, 26(10):1205
    [68] Mizoguchi T, Ueshima Y, Sugiyama M, et al. Influence of unstable non-equilibrium liquid iron oxide on clustering of alumina particles in steel. ISIJ Int, 2013, 53(4):639
    [69] Sasai K, Mizukami Y. Mechanism of alumina adhesion to continuous caster nozzle with reoxidation of molten steel. ISIJ Int, 2001, 41(11):1331
    [70] Mu W Z, Jönsson P G, Nakajima K. Prediction of the intragranular ferrite nucleation in steels with Ti-oxide and TiN additions//International Conference on High Temperature Capillarity. Bad Herrenalb, 2015
    [71] Xuan C J, Karasev A V, Jönsson P G, et al. Attraction force estimations of Al2O3 particle agglomerations in the melt. Steel Res Int, 2017, 88(2):1600090
    [72] Xuan C J. Wettability and Agglomeration Characteristics of Non-Metallic Inclusions[Dissertation]. Stockholm:KTH Royal Institute of Technology, 2016
    [73] Mu W Z, Dogan N, Coley K S. Agglomeration of non-metallic inclusions at the steel/Ar interface:model application. Metall Mater Trans B, 2017, 48(4):2092
    [74] Mizoguchi T, Ueshima Y, Sugiyama M, et al. Influence of unstable non-equilibrium liquid iron oxide on clustering of alumina particles in steel. ISIJ Int, 2013, 53(4):639
    [75] Zheng L C, Malfliet A, Wollants P, et al. Effect of alumina morphology on the clustering of alumina inclusions in molten iron. ISIJ Int, 2016, 56(6):926
    [76] Nakamoto M, Tanaka T, Suzuki M, et al. Effects of interfacial properties between molten iron and alumina on neck growth of alumina balls at sintering in molten iron. ISIJ Int, 2014, 54(6):1195
    [77] Nogi K, Ogino K. Role of interfacial phenomena in deoxidation process of molten iron. Can Metall Q, 1983, 22(1):19
    [78] Kalisz D. Calculation of assimilation process of non-metallic inclusions by slag. J Cast Mater Eng, 2017, 1(2):43
    [79] Cramb A W, Jimbo I. Interfacial considerations in continuous casting. Iron Steelmaker, 1989, 16(6):43
    [80] Monaghan B J, Abdeyazdan H, Dogan N, et al. Effect of slag composition on wettability of oxide inclusions. ISIJ Int, 2015, 55(9):1834
    [81] Abraham S, Bodnar R, Raines J, et al. Inclusion engineering and metallurgy of calcium treatment. J Iron Steel Res Int, 2018, 25(2):133
    [82] Shannon G, Sridhar S. Modeling Al2O3 inclusion separation across steel-slag interfaces. Scand J Metall, 2005, 34(6):353
    [83] Valdez M, Shannon G S, Sridhar S. The ability of slags to absorb solid oxide inclusions. ISIJ Int, 2006, 46(3):450
    [84] Liu C, Yang S F, Li J S, et al. Motion behavior of nonmetallic inclusions at the interface of steel and slag. Part I:model development, validation, and preliminary analysis. Metall Mater Trans B, 2016, 47(3):1882
    [85] Yang S F, Liu W, Li J S. Motion of solid particles at molten metal-liquid slag interface. JOM, 2015, 67(12):2993
    [86] Zheng L C, Malfliet A, Wollants P, et al. Effect of surfactant Te on the behavior of alumina inclusions at advancing solid-liquid interfaces of liquid steel. Acta Mater, 2016, 120:443
  • 加载中
计量
  • 文章访问数:  488
  • HTML全文浏览量:  196
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-11

目录

    /

    返回文章
    返回