• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属塑性成形中的韧性断裂微观机理及预测模型的研究进展

贾哲 穆磊 臧勇

贾哲, 穆磊, 臧勇. 金属塑性成形中的韧性断裂微观机理及预测模型的研究进展[J]. 工程科学学报, 2018, 40(12): 1454-1467. doi: 10.13374/j.issn2095-9389.2018.12.003
引用本文: 贾哲, 穆磊, 臧勇. 金属塑性成形中的韧性断裂微观机理及预测模型的研究进展[J]. 工程科学学报, 2018, 40(12): 1454-1467. doi: 10.13374/j.issn2095-9389.2018.12.003
JIA Zhe, MU Lei, ZANG Yong. Research progress on the micro-mechanism and prediction models of ductile fracture in metal forming[J]. Chinese Journal of Engineering, 2018, 40(12): 1454-1467. doi: 10.13374/j.issn2095-9389.2018.12.003
Citation: JIA Zhe, MU Lei, ZANG Yong. Research progress on the micro-mechanism and prediction models of ductile fracture in metal forming[J]. Chinese Journal of Engineering, 2018, 40(12): 1454-1467. doi: 10.13374/j.issn2095-9389.2018.12.003

金属塑性成形中的韧性断裂微观机理及预测模型的研究进展

doi: 10.13374/j.issn2095-9389.2018.12.003
详细信息
  • 中图分类号: TG113.25+4

Research progress on the micro-mechanism and prediction models of ductile fracture in metal forming

  • 摘要: 为实现汽车轻量化,同时保证其具有较好的碰撞安全性,高强度-质量比金属板材在汽车制造领域得到了广泛的应用.然而,在传统冲压成形过程中,上述板材(如先进高强钢、铝合金和镁合金等)会出现无明显缩颈的韧性断裂行为.特别是发生在纯剪切加载路径附近的剪切型韧性断裂行为超出了传统缩颈型成形极限图的预测范围.此外,在近些年来快速发展的单点渐进成形中,缩颈失稳被抑制,取而代之的则是无明显缩颈的韧性断裂.以上问题对基于缩颈失稳的传统成形极限分析方法提出了新的挑战,同时也限制了高强度-质量比金属板材的应用及其新型成形工艺的研发.为此,世界各国学者开始普遍关注金属材料韧性断裂预测模型的开发及其应用研究.本文首先从孔洞的演化行为方面出发,对金属韧性断裂的微观机理研究进行了介绍.随后重点评述了韧性断裂预测模型的研究进展和应用现状.最后,对韧性断裂研究的发展趋势进行了展望.本文可以为金属韧性断裂模型的选择、应用及其开发提供有益参考.
  • [1] Keeler S P, Backofen W A. Plastic instability and fracture in sheets stretched over rigid punches. ASM Trans Q, 1963, 56(1):25
    [2] Swift H W. Plastic instability under plane stress. J Mech Phys Solids, 1952, 1(1):1
    [3] Hill R. On discontinuous plastic states, with special reference to localized necking in thin sheets. J Mech Phys Solids, 1952, 1(1):19
    [4] Marciniak Z, Kuczynski K. Limit strain in the process of stretchforming sheet metals. Int J Mech Sci, 1967, 9(9):609
    [7] Park N, Huh H, Lim S J, et al. Facture-based forming limit criteria for anisotropic materials in sheet metal forming. Int J Plast, 2017, 96:1
    [8] Lou Y S, Yoon J W, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast, 2014, 54:56
    [9] Li Y N, Luo M, Gerlach J, et al. Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol, 2010, 210(14):1858
    [10] Silva M B, Skjoedt M, Atkins A G, et al. Single-point incremental forming and formability-failure diagrams. J Strain Anal Eng Des, 2008, 43(1):15
    [11] Isik K, Silva M B, Tekkaya A E, et al. Formability limits by fracture in sheet metal forming. J Mater Process Technol, 2014, 214(8):1557
    [12] Ragab A R. Prediction of fracture limit curves in sheet metals using a void growth and coalescence model. J Mater Process Technol, 2008, 199(1-3):206
    [13] Samei J, Green D E, Cheng J, et al. Influence of strain path on nucleation and growth of voids in dual phase steel sheets. Mater Des, 2016, 92:1028
    [14] Lou Y S, Chen L, Clausmeyer T, et al. Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. Int J Solids Struct, 2017, 112:169
    [15] Bai Y L, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture. Int J Fract, 2010, 161:1
    [16] Bai Y L, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast, 2008, 24(6):1071
    [17] Petch N J. The fracture of metals. Prog Met Phys, 1954, 5:1
    [18] Plateau J, Henry G, Crussard C. Quelques nouvelles applications de la microfractographie. Rev Met Paris, 1957, 54(3):200
    [19] Puttick K E. Ductile fracture in metals. Philos Mag, 1959, 4(44):964
    [20] Babout L, Brechet Y, Maire E, et al. On the competition between particle fracture and particle decohesion in metal matrix composites. Acta Mater, 2004, 52(15):4517
    [21] Goods S H, Brown L M. Overview No. 1:the nucleation of cavities by plastic deformation. Acta Metall, 1979, 27(1):1
    [22] Garrison W M, Moody N R. Ductile fracture. J Phys Chem Solids, 1987, 48(11):1035
    [23] Cox T B, Low J R. An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels. Metall Trans, 1974, 5(6):1457
    [24] Gurland J. Observations on the fracture of cementite particles in a spheroidized 1.05% C steel deformed at room temperature. Acta Metall, 1972, 20(5):735
    [25] Brown W F. Review of Developments in Plane Strain Fracture Toughness Testing. West Conshohocken:ASTM International, 1970
    [26] Gurland J. The mechanism of ductile rupture of metals containing inclusions. Trans ASM, 1963, 56:442
    [27] Beremin F M. Cavity formation from inclusions in ductile fracture of A508 steel. Metall Trans A, 1981, 12(5):723
    [28] Le Roy G, Embury J D, Edwards G, et al. A model of ductile fracture based on the nucleation and growth of voids. Acta Metall, 1981, 29(8):1509
    [29] French I E, Weinrich P F. The influence of hydrostatic pressure on the tensile deformation of a spheroidised 0.5% steel. Scripta Metall, 1974, 8(2):87
    [30] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth:part I-yield criteria and flow rules for porous ductile media. J Eng Mater Technol, 1977, 99(1):2
    [31] Maire E, Bouaziz O, Di Michiel M, et al. Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater, 2008, 56(18):4954
    [32] Landron C, Bouaziz O, Maire E, et al. Characterization and modeling of void nucleation by interface decohesion in dual phase steels. Scripta Mater, 2010, 63(10):973
    [33] McClintock F A, Kaplan S M, Berg C A. Ductile fracture by hole growth in shear bands. Int J Fract Mech, 1966, 2(4):614
    [34] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids, 1969, 17(3):201
    [35] Tracey D M. Strain-hardening and interaction effects on the growth of voids in ductile fracture. Eng Fract Mech, 1971, 3(3):301
    [36] Marino B, Mudry F, Pineau A. Experimental study of cavity growth in ductile rupture. Eng Fract Mech, 1985, 22(6):989
    [37] Weck A, Wilkinson D S, Maire E, et al. Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials. Acta Mater, 2008, 56(12):2919
    [38] Tvergaard V. Interaction of very small voids with larger voids. Int J Solids Struct, 1998, 35(30):3989
    [39] McClintock F A. A criterion for ductile fracture by the growth of holes. J Appl Mech, 1968, 35(2):363
    [40] Li H, Fu M W, Lu J, et al. Ductile fracture:experiments and computations. Int J Plast, 2011, 27(2):147
    [41] Hosford W F, Caddell R M. Metal Forming:Mechanics and Metallurgy. Cambridge:Cambridge University Press, 2011
    [42] Lou Y S, Huh H, Lim S, et al. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int J Solids Struct, 2012, 49(25):3605
    [43] Bao Y B, Wierzbicki T. On the cut-off value of negative triaxiality for fracture. Eng Fract Mech, 2005, 72(7):1049
    [44] Malcher L, Pires F M A, De Sá J M A C. An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. Int J Plast, 2012, 30-31:81
    [45] Hu Q, Li X F, Han X H, et al. A new shear and tension based ductile fracture criterion:modeling and validation. Eur J Mech A Solid, 2017, 66:370
    [46] Marino B, Mudry F, Pineau A. Experimental study of cavity growth in ductile rupture. Eng Fract Mech, 1985, 22(6):989
    [47] Bourcier R J, Koss D A, Smelser R E, et al. The influence of porosity on the deformation and fracture of alloys. Acta Metall, 1986, 34(12):2443
    [48] Brown L M, Embury J D. The microstructure and design of alloys//Proceedings of the Third International Conference on the Strength of Metals and Alloys. Cambridge, 1973:164
    [49] Shen Y, Morgeneyer T F, Garnier J, et al. Three-dimensional quantitative in situ study of crack initiation and propagation in AA6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations. Acta Mater, 2013, 61(7):2571
    [50] Weck A, Wilkinson D S. Experimental investigation of void coalescence in metallic sheets containing laser drilled holes. Acta Mater, 2008, 56(8):1774
    [51] Bao Y B, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci, 2004, 46(1):81
    [52] Achouri M, Germain G, Santo P D, et al. Experimental characterization and numerical modeling of micromechanical damage under different stress states. Mater Des, 2013, 50:207
    [53] Thomason P F. Three-dimensional models for the plastic limitloads at incipient failure of the intervoid matrix in ductile porous solids. Acta Metall, 1985, 33(6):1079
    [54] Benzerga A A, Leblond J B. Ductile fracture by void growth to coalescence. Adv Appl Mech, 2010, 44:169
    [55] Benzerga A A, Leblond J B. Effective yield criterion accounting for microvoid coalescence. J Appl Mech, 2013, 81(3):031009-1
    [56] Morin L, Leblond J B, Benzerga A A. Coalescence of voids by internal necking:theoretical estimates and numerical results. J Mech Phys of Solids, 2015, 75:140
    [57] Tekoglu C. Void coalescence in ductile solids containing two populations of voids. Eng Fract Mech, 2015, 147:418
    [58] Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions. Int J Fract, 1981, 17(4):389
    [59] Tvergaard V. On localization in ductile materials containing spherical voids. Int J Fract, 1982, 18(4):237
    [60] Chu C C, Needleman A. Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol, 1980, 102(3):249
    [61] Benzerga A A, Leblond J B, Needleman A, et al. Ductile failure modeling. Int J Fract, 2016, 201(1):29
    [62] Argon A S, Im J, Safoglu R. Cavity formation from inclusions in ductile fracture. Metall Trans A, 1975, 6(4):825
    [63] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile test bar. Acta Metall, 1984, 32(1):157
    [64] Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars. J Mech Phys Solids, 1984, 32(6):461
    [65] Nahshon K, Hutchinson J W. Modification of the Gurson model for shear failure. Eur J Mech A Solid, 2008, 27(1):1
    [66] Xue L. Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech, 2008, 75(11):3343
    [67] Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars. J Mech Phys Solids, 1984, 32(6):461
    [68] Benseddiq N, Imad A. A ductile fracture analysis using a local damage model. Int J Press Vessels Pip, 2008, 85(4):219
    [69] Kami A, Dariani B M, Vanini A S, et al. Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model. J Mater Process Technol, 2015, 216:472
    [70] Li J C, Li S P, Xie Z Y, et al. Numerical simulation of incremental sheet forming based on GTN damage model. Int J Adv Manuf Technol, 2015, 81(9-12):2053
    [71] Yan Y X, Sun Q, Chen J J, et al. The initiation and propagation of edge cracks of silicon steel during tandem cold rolling process based on the Gurson-Tvergaard-Needleman damage model. J Mater Process Technol, 2013, 213(4):598
    [72] Abbasi M, Bagheri B, Ketabchi M, et al. Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank. Comput Mater Sci, 2012, 53(1):368
    [73] Abbassi F, Belhadj T, Mistou S, et al. Parameter identification of a mechanical ductile damage using artificial neural networks in sheet metal forming. Mater Des, 2013, 45:605
    [76] Uthaisangsuk V, Prahl U, Münstermann S, et al. Experimental and numerical failure criterion for formability prediction in sheet metal forming. Comput Mater Sci, 2008, 43(1):43
    [77] Kami A, Dariani B M, Vanini A S, et al. Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model. J Mater Process Technol, 2015, 216:472
    [78] Wang S, Chen Z H, Dong C F. Tearing failure of ultra-thin sheet-metal involving size effect in blanking process:analysis based on modified GTN model. Int J Mech Sci, 2017, 133:288
    [79] Zhao P J, Chen Z H, Dong C F. Experimental and numerical analysis of micromechanical damage for DP600 steel in fine-blanking process. J Mater Process Technol, 2016, 236:16
    [80] Gatea S, Ou H G, Lu B, et al. Modelling of ductile fracture in single point incremental forming using a modified GTN model. Eng Fract Mech, 2017, 186:59
    [81] Guzmán C F, Yuan S, Duchêne L, et al. Damage prediction in single point incremental forming using an extended Gurson model. Int J Solids Struct, 2018, 151:45
    [82] Zhao J F, Kontsevoi O Y, Xiong W, et al. Simulation-aided constitutive law development-assessment of low triaxiality void nucleation models via extended finite element method. J Mech Phys Solids, 2017, 102:30
    [83] Lemaitre J. A continuous damage mechanics model for ductile fracture. J Eng Mater Technol, 1985, 107(1):83
    [84] Massé T, Chastel Y, Montmitonnet P, et al. Mechanical and damage analysis along a flat-rolled wire cold forming schedule. Int J Mater Form, 2012, 5(2):129
    [85] Cao T S, Bobadilla C, Montmitonnet P, et al. On the development and identification of phenomenological damage models-application to industrial wire drawing and rolling processes. Key Eng Mater, 2013, 554-557:213
    [86] Cao T S, Gachet J M, Montmitonnet P, et al. A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality. Eng Fract Mech, 2014, 124-125:80
    [87] Lian J H, Feng Y, Münstermann S. A modified Lemaitre damage model phenomenologically accounting for the Lode angle effect on ductile fracture. Procedia Mater Sci, 2014, 3:1841
    [88] Tang C Y, Shen W, Lee T C. A damage-based criterion for fracture prediction in metal forming processes:a case study in Al 2024T3 sheet. J Mater Process Technol, 1999, 89-90:79
    [89] Saanouni K. Virtual metal forming including the ductile damage occurrence:actual state of the art and main perspective. J Mater Process Technol, 2006, 177(1-3):19
    [90] Bai Q, Mohamed M, Shi Z, et al. Application of a continuum damage mechanics (CDM)-based model for predicting formability of warm formed aluminium alloy. Int J Adv Manuf Technol, 2017, 88(9-12):3437
    [91] Nayebi A, Shahabi M. Effect of continuum damage mechanics on springback prediction in metal forming processes. J Mech Sci Technol, 2017, 31(5):2229
    [92] Mu L, Zang Y, Wang Y, et al. Phenomenological uncoupled ductile fracture model considering different void deformation modes for sheet metal forming. Int J Mech Sci, 2018, 141:408
    [93] Freudenthal A M. The Inelastic Behavior of Engineering Materials and Structures. New York:Wiley, 1950
    [94] Oyane M, Sato T, Okimoto K, et al. Criteria for ductile fracture and their applications. J Mech Work Technol, 1980, 4(1):65
    [95] Cockcroft M G, Latham D J. Ductility and the workability of metals. J Inst Met, 1968, 96:33
    [96] Brozzo P, Deluca B, Rendna R. A new method for the prediction of formability limits in metal sheets//Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group. Amsterdam, 1972
    [103] Takuda H, Mori K, Hatta N. The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals. J Mater Process Technol, 1999, 95(1-3):116
    [104] Han H N, Kim K H. A ductile fracture criterion in sheet metal forming process. J Mater Process Technol, 2003, 142(1):231
    [105] Wierzbicki T, Xue L. On the Effect of the Third Invariant of the Stress Deviator on Ductile Fracture. Cambridge:Massachusetts Institute of Technology, 2015
    [107] Jia Y Q, Bai Y L. Ductile fracture prediction for metal sheets using all-strain-based anisotropic eMMC model. Int J Mech Sci, 2016, 115-116:516
    [108] Qian L Y, Fang G, Zeng P. Modeling of the ductile fracture during the sheet forming of aluminum alloy considering non-associated constitutive characteristic. Int J Mech Sci, 2017, 126:55
    [109] Qian L Y, Paredes M, Wierzbicki T, et al. Experimental and numerical study on shear-punch test of 6060 T6 extruded aluminum profile. Int J Mech Sci, 2016, 118:205
    [110] Luo M, Dunand M, Mohr D. Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading-Part Ⅱ:Ductile fracture. Int J Plast, 2012, 32-33:36
    [111] Paredes M, Wierzbicki T, Zelenak P. Prediction of crack initiation and propagation in X70 pipeline steels. Eng Fract Mech, 2016, 168:92
    [112] Lou Y S, Huh H. Prediction of ductile fracture for advanced high strength steel with a new criterion:experiments and simulation. J Mater Process Technol, 2013, 213(8):1284
    [113] Mu L, Wang Y, Zang Y, et al. Edge fracture prediction using uncoupled ductile fracture models for DP780 sheet. J Fail Anal Prev, 2017, 17(2):321
    [115] Mu L, Zang Y, Li X L, et al. A micromechanically-motivated phenomenological model for predicting ductile fracture initiation. Procedia Eng, 2017, 207:2054
    [116] Mohr D, Marcadet S J. Micromechanically-motivated phenomenological Hosford-Coulomb model for predicting ductile fracture initiation at low stress triaxialites. Int J Solids Struct, 2015, 67-68:40
    [117] Luo T, Gao X S. On the prediction of ductile fracture by void coalescence and strain localization. J Mech Phys Solids, 2018, 113:82
    [118] Dunand M, Mohr D. Effect of Lode parameter on plastic flow localization after proportional loading at low stress triaxialities. J Mech Phys Solids, 2014, 66:133
    [119] Brünig M, Gerke S, Hagenbrock V. Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. Int J Plast, 2013, 50:49
    [120] Sheng Z Q, Mallick P K. A ductile failure criterion for predicting sheet metal forming limit. Int J Mech Sci, 2017, 128-129:345
    [121] Cao J, Li F G, Ma X K, et al. A modified elliptical fracture criterion to predict fracture forming limit diagrams for sheet metals. J Mater Process Technol, 2018, 252:116
    [122] Rodriguez A K, Ayoub G A, Mansoor B, et al. Effect of strain rate and temperature on fracture of magnesium alloy AZ31B. Acta Mater, 2016, 112:194
    [123] Roth C C, Mohr D. Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets:experiments and modeling. Int J Plast, 2014, 56:19
    [124] Lim S J, Huh H. Fracture loci of DP980 steel sheet for autobody at intermediate strain rates. Int J Autom Technol, 2017, 18(4):719
    [125] Nam H S, Jeon J Y, Kim J S, et al. A strain rate dependent computational model of ductile damage for C (T) specimen. Procedia Eng, 2015, 130:861
    [126] Erice B, Roth C C, Mohr D. Stress-state and strain-rate dependent ductile fracture of dual and complex phase steel. Mech Mater, 2018, 116:11
    [127] Shang X Q, Cui Z S, Fu M W. A ductile fracture model considering stress state and Zener-Hollomon parameter for hot deformation of metallic materials. Int J Mech Sci, 2018, 144:800
    [128] Mirnia M J, Shamsari M. Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. J Mater Process Technol, 2017, 244:17
  • 加载中
计量
  • 文章访问数:  500
  • HTML全文浏览量:  122
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-26

目录

    /

    返回文章
    返回