• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯纤维加筋固化尾砂强度及变形特性

徐文彬 李乾龙 田明明

徐文彬, 李乾龙, 田明明. 聚丙烯纤维加筋固化尾砂强度及变形特性[J]. 工程科学学报, 2019, 41(12): 1618-1626. doi: 10.13374/j.issn2095-9389.2018.12.14.002
引用本文: 徐文彬, 李乾龙, 田明明. 聚丙烯纤维加筋固化尾砂强度及变形特性[J]. 工程科学学报, 2019, 41(12): 1618-1626. doi: 10.13374/j.issn2095-9389.2018.12.14.002
XU Wen-bin, LI Qian-long, TIAN Ming-ming. Strength and deformation properties of polypropylene fiber-reinforced cemented tailings backfill[J]. Chinese Journal of Engineering, 2019, 41(12): 1618-1626. doi: 10.13374/j.issn2095-9389.2018.12.14.002
Citation: XU Wen-bin, LI Qian-long, TIAN Ming-ming. Strength and deformation properties of polypropylene fiber-reinforced cemented tailings backfill[J]. Chinese Journal of Engineering, 2019, 41(12): 1618-1626. doi: 10.13374/j.issn2095-9389.2018.12.14.002

聚丙烯纤维加筋固化尾砂强度及变形特性

doi: 10.13374/j.issn2095-9389.2018.12.14.002
基金项目: 国家重点研发计划资助项目(2018YFC0808403)
详细信息
    通讯作者:

    E-mail:xuwb08@163.com

  • 中图分类号: TD 853

Strength and deformation properties of polypropylene fiber-reinforced cemented tailings backfill

More Information
  • 摘要: 针对胶结充填体脆性强、易开裂等问题,以聚丙烯纤维为加筋材料,通过设置水泥与尾砂质量比为1∶10和1∶20,纤维掺量为0、0.05%、0.15%和0.25%的充填体进行无侧限抗压强度试验,探究纤维掺量对胶结充填体强度及变形特性的影响,借助扫描电镜(SEM),从微观角度探讨纤维对充填体力学性质的作用机制。研究结果表明:充填料浆的屈服应力随纤维掺量增加呈线性增大,其流态模型符合Bingham流体;随着纤维掺量的增加,充填体的无侧限抗压强度呈先增大后减小趋势,纤维最优掺量为0.15%;掺入纤维有效地减缓了裂纹的扩展,约束了充填体的变形,充填体的峰后应变软化延长,残余强度增大,破坏特征由脆性向延性转变;纤维的加固效果主要受纤维与尾砂−水泥基体界面之间的黏结与摩擦作用控制。
  • 图  1  尾砂粒径分布图

    Figure  1.  Tailings particle size distribution map

    图  2  料浆屈服应力随纤维掺量变化关系

    Figure  2.  Relationship between yield stress and viscosity coefficient of slurry with fiber content

    图  3  充填体试件应力−应变关系曲线. (a) 养护龄期3 d; (b) 养护龄期7 d; (c) 养护龄期28 d

    Figure  3.  Stress−strain curves of CTB specimens: (a) curing age of 3 d; (b) curing age of 7 d; (c) curing age of 28 d

    图  4  充填体抗压强度与纤维掺量的关系. (a) 养护龄期3 d; (b) 养护龄期7 d; (c) 养护龄期28 d

    Figure  4.  Relationship between UCS of CTB and fiber content: (a) curing age of 3 d; (b) curing age of 7 d; (c) curing age of 28 d

    图  5  充填体试件破坏断口形貌

    Figure  5.  Fracture morphology of the CTB specimen

    图  6  充填体内部纤维分布

    Figure  6.  Distribution of fibers in the CTB specimen

    图  7  纤维与尾砂−水泥基体界面力学作用示意图

    Figure  7.  Schematic diagram of mechanical interaction between fiber and tailings−cement matrix

    图  8  纤维拔出后留下的凹槽

    Figure  8.  Groove left after the fiber is pulled out

    图  9  纤维表面形态特征

    Figure  9.  Morphology characteristics of the fiber surface

    图  10  充填体试件破坏方式. (a) 纤维掺量0; (b) 纤维掺量0.05%; (c) 纤维掺量0.15%; (d) 纤维掺量0.25%

    Figure  10.  Failure modes of CTB specimens: (a) fiber contents of 0; (b) fiber contents of 0.05%; (c) fiber contents of 0.15%; (d) fiber contents of 0.25%

    表  1  尾砂和水泥的化学组成成分

    Table  1.   Chemical composition of tailings and cement

    材料化学成分质量分数/%
    SiO2CaOFe2O3Al2O3MnOK2OMgOCuOSO3Na2OTiO2烧失量
    尾砂52.6011.6017.203.680.112.434.560.1904.871.751.01
    水泥20.3464.783.115.0200.351.0902.200.100.262.75
    下载: 导出CSV

    表  2  聚丙烯纤维的物理力学参数

    Table  2.   Physical and mechanical parameters of polypropylene fiber

    类型长度/mm直径/μm密度/(g·m−3抗拉强度/MPa弹性模量/GPa延伸率/%耐酸碱性分散性
    束状单丝12310.91≥400≥3.530极强极好
    下载: 导出CSV

    表  3  料浆流变特性参数

    Table  3.   Rheological property parameters of the slurry

    灰砂比纤维掺量/%拟合方程n相关系数,R2
    1∶100.00τ=65.84+1.22γ1.000.9908
    1∶100.05τ=83.49+1.57γ1.000.9921
    1∶100.15τ=107.46+1.84γ1.000.9894
    1∶100.25τ=136.60+2.61γ1.000.9893
    1∶200.00τ=63.98+1.07γ1.000.9830
    1∶200.05τ=78.45+1.50γ1.000.9920
    1∶200.15τ=103.59+1.93γ1.000.9917
    1∶200.25τ=130.08+2.27γ1.000.9876
    下载: 导出CSV

    表  4  不同纤维掺量下充填体试件脆性程度指标

    Table  4.   Brittleness index of CTB specimens under different fiber contents

    灰砂比纤维掺量/%σ${\upsilon _\sigma }$Bs
    1∶100.000.930.29590.2752
    1∶100.050.830.24790.2058
    1∶100.150.810.24340.1972
    1∶100.250.710.21720.1542
    1∶200.000.860.27040.2325
    1∶200.050.780.22430.1750
    1∶200.150.670.20410.1367
    1∶200.250.660.19710.1301
    下载: 导出CSV
  • [1] 李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索. 中国有色金属学报, 2017, 27(6):1236

    Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236
    [2] 张吉雄, 张强, 巨峰, 等. 深部煤炭资源采选充绿色化开采理论与技术. 煤炭学报, 2018, 43(2):377

    Zhang J X, Zhang Q, Ju F, et al. Theory and technique of greening mining integrating mining, separating and backfilling in deep coal resources. J China Coal Soc, 2018, 43(2): 377
    [3] 于润沧. 我国充填工艺创新成就与尚需深入研究的课题. 采矿技术, 2011, 11(3):1 doi: 10.3969/j.issn.1671-2900.2011.03.001

    Yu R C. Achievements and subjects needing studied further of filling technology innovation in China. Min Technol, 2011, 11(3): 1 doi: 10.3969/j.issn.1671-2900.2011.03.001
    [4] Consoli N C, Bassani M A A, Festugato L. Effect of fiber-reinforcement on the strength of cemented soils. Geotextiles Geomembranes, 2010, 28(4): 344 doi: 10.1016/j.geotexmem.2010.01.005
    [5] Akbulut S, Arasan S, Kalkan E. Modification of clayey soils using scrap tire rubber and synthetic fibers. Appl Clay Sci, 2007, 38(1-2): 23 doi: 10.1016/j.clay.2007.02.001
    [6] 黄晓燕, 倪文, 李克庆. 铁尾矿粉制备高延性纤维增强水泥基复合材料. 工程科学学报, 2015, 37(11):1491

    Huang X Y, Ni W, Li K Q. Development of engineered cementitious composites containing iron ore tailing powders. Chin J Eng, 2015, 37(11): 1491
    [7] 鹿群, 郭少龙, 王闵闵, 等. 纤维水泥土力学性能的试验研究. 岩土力学, 2016, 37(增刊 2):421

    Lu Q, Guo S L, Wang M M, et al. Experimental study of mechanical properties of fiber cement soil. Rock Soil Mech, 2016, 37(Suppl 2): 421
    [8] Kakooei S, Akil H M, Jamshidi M, et al. The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction Building Mater, 2012, 27(1): 73 doi: 10.1016/j.conbuildmat.2011.08.015
    [9] Hamidi A, Hooresfand M. Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles Geomembranes, 2013, 36: 1 doi: 10.1016/j.geotexmem.2012.10.005
    [10] Aly T, Sanjayan J G. Shrinkage-cracking behavior of OPC-fiber concrete at early-age. Mater Struct, 2010, 43(6): 755 doi: 10.1617/s11527-009-9526-7
    [11] Li J J, Niu J G, Wan C J, et al. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete. Construction Building Mater, 2016, 118: 27 doi: 10.1016/j.conbuildmat.2016.04.116
    [12] Tang C S, Shi B, Gao W, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles Geomembranes, 2007, 25(3): 194 doi: 10.1016/j.geotexmem.2006.11.002
    [13] 林艳杰, 李红云. 聚丙烯纤维轻骨料混凝土的抗压性能实验研究. 硅酸盐通报, 2013, 32(10):2160

    Lin Y J, Li H Y. Experimental study on the compressive performance of polypropylene fiber reinforced lightweight aggregate concret. Bull Chin Ceram Soc, 2013, 32(10): 2160
    [14] 徐文彬, 杨宝贵, 杨胜利, 等. 矸石充填料浆流变特性与颗粒级配相关性试验研究. 中南大学学报: 自然科学版, 2016, 47(4):1282

    Xu W B, Yang B G, Yang S L, et al. Experimental study on correlativity between rheological parameters and grain grading of coal gauge backfill slurry. J Central S Univ Sci Technol, 2016, 47(4): 1282
    [15] Zhang P, Li Q F. Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Composites Part B Eng, 2013, 45(1): 1587 doi: 10.1016/j.compositesb.2012.10.006
    [16] 蔡美峰, 何满潮, 刘东燕. 岩石力学与工程. 2版. 北京: 科学出版社, 2013

    Cai M F, He M C, Liu D Y. Rock Mechanics and Engineering. 2nd Ed. Beijing: Science Press, 2013
    [17] 王伟, 王中华, 曾媛, 等. 聚丙烯纤维复合土抗裂补强特性试验研究. 岩土力学, 2011, 32(3):703 doi: 10.3969/j.issn.1000-7598.2011.03.011

    Wang W, Wang Z H, Zeng Y, et al. Experimental study of anti-cracking and reinforcement behaviors of polypropylene fiber composite soil. Rock Soil Mech, 2011, 32(3): 703 doi: 10.3969/j.issn.1000-7598.2011.03.011
    [18] 周辉, 孟凡震, 张传庆, 等. 基于应力–应变曲线的岩石脆性特征定量评价方法. 岩石力学与工程学报, 2014, 33(6):1114

    Zhou H, Meng F Z, Zhang C Q, et al. Quantitative evaluation of rock brittleness based on stress-strain curve. Chin J Rock Mech Eng, 2014, 33(6): 1114
    [19] 阮波, 彭学先, 米娟娟, 等. 聚丙烯纤维加筋红黏土抗剪强度特性试验研究. 铁道科学与工程学报, 2017, 14(4):705 doi: 10.3969/j.issn.1672-7029.2017.04.006

    Ruan B, Peng X X, Mi J J, et al. Experimental study on shear strength of polypropylene fiber reinforced red clay. J Railway Sci Eng, 2017, 14(4): 705 doi: 10.3969/j.issn.1672-7029.2017.04.006
    [20] 邓友生, 吴鹏, 赵明华, 等. 基于最优含水率的聚丙烯纤维增强膨胀土强度研究. 岩土力学, 2017, 38(2):349

    Deng Y S, Wu P, Zhao M H, et al. Strength of expansive soil reinforced by polypropylene fiber under optimal water content. Rock Soil Mech, 2017, 38(2): 349
    [21] Yang Z. Strength and Deformation Characteristic of Reinforced Sand[Dissertation]. Los Angeles: University of California, 1972
    [22] 徐文彬, 杜建华, 宋卫东, 等. 超细全尾砂材料胶凝成岩机理试验. 岩土力学, 2013, 34(8):2295

    Xu W B, Du J H, Song W D, et al. Experiment on the mechanism of consolidating backfill body of extra-fine grain unclassified tailings and cementitious materials. Rock Soil Mech, 2013, 34(8): 2295
    [23] 徐文彬, 潘卫东, 丁明龙. 胶结充填体内部微观结构演化及其长期强度模型试验. 中南大学学报(自然科学版), 2015, 46(6):2333 doi: 10.11817/j.issn.1672-7207.2015.06.046

    Xu W B, Pan W D, Ding M L. Experiment on evolution of microstructures and long-term strength model of cemented backfill mass. J Central S Univ Sci Technol, 2015, 46(6): 2333 doi: 10.11817/j.issn.1672-7207.2015.06.046
    [24] 陈蛟龙, 张娜, 李恒, 等. 赤泥基似膏体充填材料水化特性研究. 工程科学学报, 2017, 39(11):1640

    Chen J L, Zhang N, Li H, et al. Hydration characteristics of red-mud based paste-like backfill material. Chin J Eng, 2017, 39(11): 1640
    [25] Xu W B, Cao P W, Tian M M. Strength development and microstructure evolution of cemented tailings backfill containing different binder types and contents. Minerals, 2018, 8(4): 167 doi: 10.3390/min8040167
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  805
  • HTML全文浏览量:  596
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-14
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回