• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

202不锈钢中非金属夹杂物的形成机理

李璟宇 成国光 李六一 胡斌 徐昌松 王贵民

李璟宇, 成国光, 李六一, 胡斌, 徐昌松, 王贵民. 202不锈钢中非金属夹杂物的形成机理[J]. 工程科学学报, 2019, 41(12): 1567-1574. doi: 10.13374/j.issn2095-9389.2018.12.18.004
引用本文: 李璟宇, 成国光, 李六一, 胡斌, 徐昌松, 王贵民. 202不锈钢中非金属夹杂物的形成机理[J]. 工程科学学报, 2019, 41(12): 1567-1574. doi: 10.13374/j.issn2095-9389.2018.12.18.004
LI Jing-yu, CHENG Guo-guang, LI Liu-yi, HU Bin, XU Chang-song, WANG Gui-min. Formation mechanism of non-metallic inclusions in 202 stainless steel[J]. Chinese Journal of Engineering, 2019, 41(12): 1567-1574. doi: 10.13374/j.issn2095-9389.2018.12.18.004
Citation: LI Jing-yu, CHENG Guo-guang, LI Liu-yi, HU Bin, XU Chang-song, WANG Gui-min. Formation mechanism of non-metallic inclusions in 202 stainless steel[J]. Chinese Journal of Engineering, 2019, 41(12): 1567-1574. doi: 10.13374/j.issn2095-9389.2018.12.18.004

202不锈钢中非金属夹杂物的形成机理

doi: 10.13374/j.issn2095-9389.2018.12.18.004
基金项目: 国家自然科学基金资助项目(51374020);钢铁冶金新技术国家重点实验室资助项目(41618007)
详细信息
    通讯作者:

    E-mail:chengguoguang@metall.ustb.edu.cn

  • 中图分类号: TF764.1

Formation mechanism of non-metallic inclusions in 202 stainless steel

More Information
  • 摘要: 通过工业试验对202不锈钢进行系统取样,分析试样中夹杂物的变化特征,结合热力学计算,研究了202不锈钢中非金属夹杂物的形成机理。在进行硅锰脱氧后,LF精炼过程中钢液内以球型Ca−Si−Mn−O夹杂物为主。对于硅锰脱氧钢,钢液中残余铝质量分数为1×10−5时,可以扩大Mn−Si−O相图的液相区,但铝质量分数超过3×10−5会导致钢中容易形成氧化铝夹杂物并减小液相区。在连铸坯中以Mn−Al−O类夹杂物为主,相较于LF精炼过程试样,连铸坯试样中夹杂物的MnO和Al2O3含量明显增加,CaO和SiO2含量明显减小,夹杂物个数则由LF出钢试样的5.5 mm−2增加到11.3 mm−2。结合热力学计算发现,凝固过程中会有Mn−Al−O夹杂物形成,这也使其成为连铸坯中主要的夹杂物类型。
  • 图  1  202不锈钢冶炼工艺及取样示意图

    Figure  1.  Schematic illustration of sampling locations

    图  2  202不锈钢试样中典型夹杂物形貌. (a) 试样1;(b) 试样2;(c) 试样3

    Figure  2.  Morphology of inclusions in steel samples: (a) sample 1; (b) sample 2; (c) sample 3

    图  3  202不锈钢试样中典型夹杂物成分分布情况. (a) 试样1;(b) 试样2;(c) 试样3

    Figure  3.  Distribution of main elements in inclusions: (a) sample 1; (b) sample 2; (c) sample 3

    图  4  夹杂物在CaO−SiO2−MnO相图中的分布情况

    Figure  4.  Composition distributions (mass fraction) of inclusions in CaO−SiO2−MnO phase diagrams. Solid lines represent the boundary line of different phases at 1873 K

    图  5  夹杂物在Al2O3−SiO2−MnO相图中的分布情况

    Figure  5.  Composition distributions (mass fraction) of inclusions in Al2O3−SiO2−MnO phase diagrams. Solid lines represent the boundary line of different phases at 1873 K

    图  6  试样中不同尺寸夹杂物数量分布

    Figure  6.  Size distribution of inclusions in all samples

    图  7  不同尺寸夹杂物中各氧化物质量比例. (a) 试样1;(b) 试样2;(c) 试样3

    Figure  7.  Mass ratio of main compositions in inclusions of different sizes: (a) sample 1; (b) sample 2; (c) sample 3

    图  8  1600 ℃202不锈钢Si−Mn−O平衡相图

    Figure  8.  Phase diagram of the Si−Mn−O system with iso-oxygen contours in Fe−15Cr−4Ni steel at 1600 ℃

    图  9  1600 ℃不同铝含量202不锈钢Si−Mn−O平衡相图. (a) Fe−15Cr−4Ni−0.001Al钢液;(b) Fe−15Cr−4Ni−0.003Al钢液

    Figure  9.  Phase diagram of the Si−Mn−O system with iso-oxygen contours: (a) Fe−15Cr−4Ni−0.001Al steel; (b) Fe−15Cr−4Ni−0.003Al steel at 1600 ℃

    图  10  202不锈钢平衡析出相图. (a) 1×10−5 Al; (b) 3×10−5 Al; (c) 6×10−5 Al; (d) 1×10−4 Al

    Figure  10.  Equilibrium precipitation of inclusions during continuous casting of sample 3 with different Al contents: (a) 1×10−5 Al; (b) 3×10−5 Al; (c) 6×10−5 Al; (d) 1×10−4 Al

    表  1  202不锈钢主要成分

    Table  1.   Chemical composition of 202 stainless steel

    试样号取样位置质量分数/%
    CSiMnSCrNiAlO
    1#LF进站0.0360.507.340.011014.773.950.00040.0029
    2#LF出站0.0360.497.400.009515.033.970.00050.0024
    3#连铸坯0.0410.457.310.003314.733.980.00090.0022
    下载: 导出CSV
  • [1] Todoroki H, Inada S. Recent innovation and prospect in production technology of specialty steels with high cleanliness. Bull Iron Steel Inst Jpn, 2003, 8(8): 575
    [2] Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int, 2010, 50(10): 1333 doi: 10.2355/isijinternational.50.1333
    [3] 李璟宇, 成国光, 钱国余, 等. 304不锈钢热(冷)轧板表面线缺陷. 中国冶金, 2017, 27(1):29

    Li J Y, Cheng G G, Qian G Y, et al. Line defect on surface of hot (cold)-rolled 304 stainless steel sheet. China Metall, 2017, 27(1): 29
    [4] Chen S H, Jiang M, He X F, et al. Top slag refining for inclusion composition transform control in tire cord steel. Int J Miner Metall Mater, 2012, 19(6): 490 doi: 10.1007/s12613-012-0585-3
    [5] 程礼梅, 张立峰, 沈平. 钢铁冶金过程中的界面现象. 工程科学学报, 2018, 40(10):1139

    Cheng L M, Zhang L F, Shen P. Interfacial phenomena in ironmaking and steelmaking. Chin J Eng, 2018, 40(10): 1139
    [6] Thapliyal V, Kumar A, Robertson D, et al. Inclusion modification in Si–Mn killed steels using titanium addition. ISIJ Int, 2015, 55(1): 190 doi: 10.2355/isijinternational.55.190
    [7] Park J H, Kang Y B. Effect of ferrosilicon addition on the composition of inclusions in 16Cr‒14Ni‒Si stainless steel melts. Metall Mater Trans B, 2006, 37(5): 791 doi: 10.1007/s11663-006-0061-4
    [8] Mizuno K, Todoroki H, Noda M, et al. Effects of Al and Ca in ferrosilicon alloys for deoxidation on inclusion composition in type 304 stainless steel. Iron Steelmaker, 2001, 28(8): 93
    [9] Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of non-metallic inclusion of spinel (MgO·Al2O3) in liquid steel. Tetsu-to-Hagané, 1998, 84(2): 85 doi: 10.2355/tetsutohagane1955.84.2_85
    [10] Zhang L F, Thomas B G. State of the art in evaluation and control of steel cleanliness. ISIJ Int, 2003, 43(3): 271 doi: 10.2355/isijinternational.43.271
    [11] Rackers K G, Thomas B G. Clogging in continuous casting nozzles // 78th Steelmaking Conference Proceedings. Nashville, 1995: 723
    [12] Ye G Z, Jönsson P, Lund T. Thermodynamics and kinetics of the modification of Al2O3 inclusions. ISIJ Int, 1996, 36(Suppl): S105 doi: 10.2355/isijinternational.36.Suppl_S105
    [13] Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel. Metall Mater Trans B, 1997, 28(5): 953 doi: 10.1007/s11663-997-0023-5
    [14] Park J H, Lee S B, Kim D S. Inclusion control of ferritic stainless steel by aluminum deoxidation and calcium treatment. Metall Mater Trans B, 2005, 36(1): 67 doi: 10.1007/s11663-005-0007-2
    [15] Li J Y, Cheng G G, Ruan Q, et al. Evolution mechanism of oxide inclusions in titanium-stabilized AISI 443 stainless steel. Metall Mater Trans B, 2018, 49(5): 2357 doi: 10.1007/s11663-018-1331-7
    [16] Li J Y, Cheng G G, Ruan Q, et al. Evolution mechanism of inclusions in Al-killed, Ti-bearing 11Cr stainless steel with Ca treatment. ISIJ Int, 2018, 58(6): 1042 doi: 10.2355/isijinternational.ISIJINT-2017-565
    [17] 王晓英, 仇圣桃, 邹宗树, 等. Al−Ca复合合金钢水脱氧机理的研究. 工程科学学报, 2017, 39(5):702

    Wang X Y, Qiu S T, Zou Z S, et al. Study on steel deoxidation with Al−Ca compound alloy. Chin J Eng, 2017, 39(5): 702
    [18] Goto H, Miyazawa K I, Yamada W, et al. Effect of cooling rate on composition of oxides precipitated during solidification of steels. ISIJ Int, 1995, 35(6): 708 doi: 10.2355/isijinternational.35.708
    [19] Nurmi S, Louhenkilpi S, Holappa L. Thermodynamic evaluation of inclusions formation and behaviour in steels during casting and solidification. Steel Res Int, 2009, 80(6): 436
    [20] Choi J Y, Kim S K, Kang Y B, et al. Compositional evolution of oxide inclusions in austenitic stainless steel during continuous casting. Steel Res Int, 2015, 86(3): 284 doi: 10.1002/srin.201300486
    [21] Okuyama G, Yamaguchi K, Takeuchi S, et al. Effect of slag composition on the kinetics of formation of Al2O3−MgO inclusions in aluminum killed ferritic stainless steel. ISIJ Int, 2000, 40(2): 121 doi: 10.2355/isijinternational.40.121
    [22] Park J H, Kim D S. Effect of CaO−Al2O3−MgO slags on the formation of MgO−Al2O3 inclusions in ferritic stainless steel. Metall Mater Trans B, 2005, 36(4): 495 doi: 10.1007/s11663-005-0041-0
    [23] Park J H. Thermodynamic investigation on the formation of inclusions containing MgAl2O4 spinel during 16Cr-14Ni austenitic stainless steel manufacturing processes. Mater Sci Eng A, 2008, 472(1-2): 43 doi: 10.1016/j.msea.2007.03.011
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  471
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-18
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回