侯琼, 陶宇, 贾建. 新型粉末高温合金多火次等温锻造过程中晶粒细化机制[J]. 工程科学学报, 2019, 41(2): 209-215. DOI: 10.13374/j.issn2095-9389.2019.02.007
引用本文: 侯琼, 陶宇, 贾建. 新型粉末高温合金多火次等温锻造过程中晶粒细化机制[J]. 工程科学学报, 2019, 41(2): 209-215. DOI: 10.13374/j.issn2095-9389.2019.02.007
HOU Qiong, TAO Yu, JIA Jian. Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging[J]. Chinese Journal of Engineering, 2019, 41(2): 209-215. DOI: 10.13374/j.issn2095-9389.2019.02.007
Citation: HOU Qiong, TAO Yu, JIA Jian. Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging[J]. Chinese Journal of Engineering, 2019, 41(2): 209-215. DOI: 10.13374/j.issn2095-9389.2019.02.007

新型粉末高温合金多火次等温锻造过程中晶粒细化机制

Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging

  • 摘要: 为探索多火次等温锻造对新型粉末高温合金晶粒细化的影响, 本文对实验合金进行了每火次变形量40%左右的三火次等温锻造, 采用商用有限元软件DEFORM 2D模拟锻造过程中的等效应变分布图, 采用电子背散射衍射技术对各火次后的锻坯进行显微组织观察和分析.研究表明: 等温锻造过程中, 锻坯轴向剖面大致分为三个区域, 位于上、下两端面附近的Ⅰ区变形量最小, 位于两侧附近的Ⅱ区次之, 位于剖面中心的Ⅲ区变形程度最大.经过三火次等温锻造后, 锻坯Ⅱ、Ⅲ区再结晶充分, 获得等轴细晶组织, 平均晶粒尺寸2~3 μm.然而Ⅰ区形成再结晶不完全的"项链"组织, 在变形晶粒周围分布大量细小的再结晶晶粒, 变形晶粒内小角度晶界含量较多, 位错密度较高.通过对三火次后的锻坯进行合适的热处理, Ⅰ区"项链"组织得到细化, Ⅱ、Ⅲ区组织发生晶粒长大, 整个盘坯为较均匀的细晶组织, 平均晶粒尺寸为6~8 μm.

     

    Abstract: Nickel-base powder metallurgy (PM) superalloys are widely used as high temperature components in gas turbine engines owing to their outstanding mechanical properties and workability under intense heat. In order to meet the performance requirements of a new generation aircraft engine with a higher thrust-weight ratio, the fourth generation PM superalloy has been studied at home and abroad. Its operating temperature has been raised to 815-850℃. The alloy in this study was a newly-designed fourth generation PM superalloy, which exhibited excellent high temperature stress rupture and creep properties compared with the previous three generations' PM superalloys, FGH4095, FGH4096, and FGH4098. Based on the performance characteristics of PM superalloys of different grain sizes, dual microstructure heat treatment (DMHT) has been used to produce a turbine disk which has a fine-grained bore and a coarse-grained rim. Therefore, it was first necessary to obtain a uniform fine-grained disk. It has been demonstrated that the fine-grained disk can be gained through hot isostatic pressing (HIP) and multi-steps of high temperature working. In order to study the influence of multiple isothermal forging (ITF) on the grain refinement of the advanced PM superalloy, three steps of ITF were employed; each deformation was about 40%. The effective strain distribution of the alloy during ITF was simulated by using the commercial finite element software DEFORM 2D. Microstructures of those forgings were investigated by means of the electron back scattered diffraction (EBSD) technique. The experimental results show that during ITF, the axial section of the forging is divided into three regions. Region Ⅰ, located in the upper and lower end faces, has the smallest deformation. Region Ⅱ is located at both sides of the section, and its deformation is larger than that of region Ⅰ. And region Ⅲ, located in the center of the section, obtains the maximal deformation. After three steps of ITF, Regions Ⅱ and Ⅲ of the forging are fully recrystallized, and equiaxed fine-grained microstructures with an average grain size of 2-3 μm are generated. Nevertheless, necklace structures form near Region Ⅰ of the forging. A great amount of fine recrystallized grains distribute around the non-equiaxed deformed grains. The deformed grains contain plenty of low-angle grain boundaries (LAGBs), which mean that the dislocation density is very high. Through proper heat treatment, the necklace structure in Region Ⅰ is refined. Meanwhile, grain growth occurs in Region Ⅱ and Ⅲ. These findings suggest that fine-grained disks with uniform microstructures can be achieved, and the average grain size is 6-8 μm.

     

/

返回文章
返回