• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn对2205双相不锈钢耐点蚀性能的影响

郑建超 潘超 张建涛 付少鹏 林平 胡晓军

郑建超, 潘超, 张建涛, 付少鹏, 林平, 胡晓军. Mn对2205双相不锈钢耐点蚀性能的影响[J]. 工程科学学报, 2019, 41(2): 246-253. doi: 10.13374/j.issn2095-9389.2019.02.012
引用本文: 郑建超, 潘超, 张建涛, 付少鹏, 林平, 胡晓军. Mn对2205双相不锈钢耐点蚀性能的影响[J]. 工程科学学报, 2019, 41(2): 246-253. doi: 10.13374/j.issn2095-9389.2019.02.012
ZHENG Jian-chao, PAN Chao, ZHANG Jian-tao, FU Shao-peng, LIN Ping, HU Xiao-jun. Effect of manganese addition on resistance to pitting corrosion of duplex stainless steel S32205[J]. Chinese Journal of Engineering, 2019, 41(2): 246-253. doi: 10.13374/j.issn2095-9389.2019.02.012
Citation: ZHENG Jian-chao, PAN Chao, ZHANG Jian-tao, FU Shao-peng, LIN Ping, HU Xiao-jun. Effect of manganese addition on resistance to pitting corrosion of duplex stainless steel S32205[J]. Chinese Journal of Engineering, 2019, 41(2): 246-253. doi: 10.13374/j.issn2095-9389.2019.02.012

Mn对2205双相不锈钢耐点蚀性能的影响

doi: 10.13374/j.issn2095-9389.2019.02.012
详细信息
  • 中图分类号: TG142.72

Effect of manganese addition on resistance to pitting corrosion of duplex stainless steel S32205

  • 摘要: 研究锰元素对2205双相不锈钢耐点蚀性能的影响,锰质量分数的变化范围为0.93%~1.26%.分别采用化学腐蚀法、动电位极化法研究双相不锈钢2205的耐腐蚀性能,采用夹杂物自动分析技术研究锰对钢中夹杂物种类及数量的影响,通过扫描电镜、能谱及夹杂物原位分析法观察化学腐蚀及电化学腐蚀前后钢中夹杂物及其周围钢基体的变化情况.采用电感耦合等离子体发光光谱测定腐蚀产物的成分.研究结果表明,不同类型的夹杂物对耐腐蚀性能的影响不同,(Mn、Si)氧化物以及(Mn、Si、Cr)氧硫化物在腐蚀液中更易溶解进而促进腐蚀,而(Cr、Mn、Al)氧化物却很稳定.锰的加入会促进钢中(Cr、Mn、Al)夹杂的析出,此类夹杂物不仅自身很容易被含Cl离子的溶液腐蚀,而且作为点蚀的起始点,促进了点蚀坑的形成,加快了基体腐蚀,最终导致不锈钢耐点蚀性能的下降.
  • [1] Garfias-Mesias L F, Sykes J M, Tuck C D S. The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions. Corros Sci, 1996, 38(8):1319
    [2] Momeni A, Kazemi S, Bahrani A. Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining. Int J Miner Metall Mater, 2013, 20(10):953
    [3] Cheng X Q, Li C T, Dong C F, et al. Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy. Int J Miner Metall Mater, 2011, 18(1):42
    [4] Deng B, Jiang Y M, Xu J L, et al. Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101. Corros Sci, 2010, 52(3):969
    [5] Olsson J, Snis M. Duplex-A new generation of stainless steels for desalination plants. Desalination, 2007, 205(1-3):104
    [7] Yang S M, Chen Y C, Chen C H, et al. Microstructural characterization of δ/γ/σ/γ2/χ phases in silver-doped 2205 duplex stainless steel under 800℃ aging. J Alloys Compd, 2015, 633:48
    [8] Pohl M, Storz O, Glogowski T. Effect of intermetallic precipitations on the properties of duplex stainless steel. Mater Charact, 2007, 58(1):65.
    [9] Merello R, Botana F J, Botalla J, et al. Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn-N duplex stainless steels. Corros Sci, 2003, 45(5):909
    [10] Westin E M, Olsson C O A, Hertzman S. Weld oxide formation on lean duplex stainless steel. Corros Sci, 2008, 50(9):2620
    [13] Ueji R, Tsuchida N, Terada D, et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scripta Mater, 2008, 59(9):963
    [14] Calcagnotto M, Ponge D, Raabe D. On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels. Metall Mater Trans A, 2012, 43(1):37
    [15] Tsukatani I, Hashimoto S, Inoue T. Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite. ISIJ Int, 1991, 31(9):992
    [16] An L C, Cao J, Wu L C, et al. Effects of Mo and Mn on pitting behavior of duplex stainless steel. J Iron Steel Res Int, 2016, 23(12):1333
    [17] Toor I, Hyun P J, Kwon H S. Development of high Mn-N duplex stainless steel for automobile structural components. Corros Sci, 2008, 50(2):404
    [18] Li J, Xu Y L, Xiao X S, et al. A new resource-saving, high manganese and nitrogen super duplex stainless steel 25Cr-2Ni-3Mo-xMn-N. Mater Sci Eng A, 2009, 527(1-2):245
    [19] Diederichs R, Bleck W. Modelling of manganese sulphide formation during solidification, part I:description of MnS formation parameters. Steel Res Int, 2006, 77(3):202
    [20] Oikawa K, Ishida K, Nishizawa T. Effect of titanium addition on the formation and distribution of MnS inclusions in steel during solidification. ISIJ Int, 1997, 37(4):332
    [22] Webb E G, Suter T, Alkire R C. Microelectrochemical measurements of the dissolution of single MnS inclusions, and the prediction of the critical conditions for pit initiation on stainless steel. J Electrochem Soc, 2001, 148(5):B186
    [23] Lillard R S, Kashfipour M A, Niu W. Pit propagation at the boundary between manganese sulfide inclusions and austenitic stainless steel 303 and the role of copper. J Electrochem Soc, 2016, 163(8):C440
    [24] Ha H Y, Park C J, Kwon H S. Effects of misch metal on the formation of non-metallic inclusions and the associated resistance to pitting corrosion in 25% Cr duplex stainless steels. Scripta Mater, 2006, 55(11):991
    [25] Williams D E, Zhu Y Y. Explanation for initiation of pitting corrosion of stainless steels at sulfide inclusions. J Electrochem Soc, 2000, 147(5):1763
    [26] Williams D E, Mohiuddin T F, Zhu Y Y. Elucidation of a trigger mechanism for pitting corrosion of stainless steels using submicron resolution scanning electrochemical and photoelectrochemical microscopy. J Electrochem Soc, 1998, 145(8):2664
    [27] Ohta H, Suito H. Activities in CaO-SiO2-Al2O3 slags and deoxidation equilibria of Si and Al. Metall Mater Trans B, 1996, 27(6):943
    [28] Zheng J C, Hu X J, Pan C, et al. Effects of inclusions on the resistance to pitting corrosion of S32205 duplex stainless steel. Mater Corros, 2018, 69(5):572
    [29] Amadou T, Sidhom H, Braham C. Double loop electrochemical potentiokinetic reactivation test optimization in checking of duplex stainless steel intergranular corrosion susceptibility. Metall Mater Trans A, 2004, 35(11):3499
    [30] Deng B, Jiang Y M, Xu J L, et al. Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101. Corros Sci, 2010, 52(3):969
  • 加载中
计量
  • 文章访问数:  569
  • HTML全文浏览量:  238
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-13

目录

    /

    返回文章
    返回