• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有核壳结构的FeS2微米球与碳纳米管原位复合介孔材料的构建及其在锂离子电池中的应用

官亮亮 鲁建豪 连芳

官亮亮, 鲁建豪, 连芳. 具有核壳结构的FeS2微米球与碳纳米管原位复合介孔材料的构建及其在锂离子电池中的应用[J]. 工程科学学报, 2019, 41(4): 489-496. doi: 10.13374/j.issn2095-9389.2019.04.009
引用本文: 官亮亮, 鲁建豪, 连芳. 具有核壳结构的FeS2微米球与碳纳米管原位复合介孔材料的构建及其在锂离子电池中的应用[J]. 工程科学学报, 2019, 41(4): 489-496. doi: 10.13374/j.issn2095-9389.2019.04.009
GUAN Liang-liang, LU Jian-hao, LIAN Fang. Mesoporous composite of core—shell FeS2 micron spheres with multi-walled CNTs and its application in lithium ion batteries[J]. Chinese Journal of Engineering, 2019, 41(4): 489-496. doi: 10.13374/j.issn2095-9389.2019.04.009
Citation: GUAN Liang-liang, LU Jian-hao, LIAN Fang. Mesoporous composite of core—shell FeS2 micron spheres with multi-walled CNTs and its application in lithium ion batteries[J]. Chinese Journal of Engineering, 2019, 41(4): 489-496. doi: 10.13374/j.issn2095-9389.2019.04.009

具有核壳结构的FeS2微米球与碳纳米管原位复合介孔材料的构建及其在锂离子电池中的应用

doi: 10.13374/j.issn2095-9389.2019.04.009
基金项目: 

国家重点研发计划资助项目(2018YFB0104302)

国家自然科学基金资助项目(51872026)

详细信息
  • 中图分类号: TG142.71

Mesoporous composite of core—shell FeS2 micron spheres with multi-walled CNTs and its application in lithium ion batteries

  • 摘要: 通过简单的水热反应原位合成了具有核壳结构的FeS2微米球与多壁碳纳米管复合的介孔材料(C-S-FeS2@MWCNT).FeS2微米球表面由纳米片状颗粒堆叠形成的厚度为~350 nm壳层,以及以化学键的形式吸附在微球表面的碳纳米管共同构成了材料保护层.保护层具有丰富的官能团和大量的孔隙结构,保证了锂离子扩散通道,并有效抑制了体积膨胀.C-S-FeS2@MWCNT在200 mA·g-1的电流密度下,250次循环可逆容量达到638 mA·h·g-1,倍率性能也得到明显改善,为过渡金属硫化物电极材料的微米化设计和体积能量密度的提升提供了可能.
  • [1] Zhang S S, Tran D T. Mechanism and solution for the capacity fading of Li/FeS2 battery. J Electrochem Soc, 2016, 163(5):A792
    [2] Tan R, Yang J L, Hu J T, et al. Core-shell nano-FeS2@Ndoped graphene as an advanced cathode material for rechargeable Li-ion batteries. Chem Commun, 2016, 52(5):986
    [3] Fong R, Dahn J R, Jones C H W. Electrochemistry of pyritebased cathodes for ambient temperature lithium batteries. J Electrochem Soc, 1989, 136(11):3206
    [4] Hu Z, Zhang K, Zhu Z Q, et al. FeS2 microspheres with an etherbased electrolyte for high-performance rechargeable lithium batteries. J Mater Chem A, 2015, 3(24):12898
    [5] Hu Z, Zhu Z Q, Cheng F Y, et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ Sci, 2015, 8:1309
    [6] Tomczuk Z, Tani B, Otto N C, et al. Phase relationships in positive electrodes of high temperature Li-Al/LiCl-KCl/FeS2 cells. J Electrochem Soc, 1982, 129(5):925
    [7] Cabana J, Monconduit L, Larcher D, et al. Beyond intercalationbased Li-ion batteries:the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22(35):E170
    [8] Zhang F F, Huang G, Wang X X, et al. Sulfur-impregnated coreshell hierarchical porous carbon for lithium-sulfur batteries. Chem Eur J, 2014, 20(52):17523
    [9] Liang X, Liu Y, Wen Z Y, et al. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries. J Power Sources, 2011, 196(16):6951
    [10] Wang L N, Wang Y G, Xia Y Y. A high performance lithiumion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ Sci, 2015, 8(5):1551
    [11] Zhang D, Mai Y J, Xiang J Y, et al. FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity. J Power Sources, 2012, 217:229
    [12] Chen T, Zhang Z W, Cheng B R, et al. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J Am Chem Soc, 2017, 139(36):12710
    [13] Ahn I S, Kim D W, Kang D K, et al. The effects of the particle size and active materials on the discharge properties of the Li/Fe (X) S2 electrode. Met Mater Int, 2008, 14(1):65
    [14] Xu L, Hu Y J, Zhang H X, et al. Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries. ACS Sustainable Chem Eng, 2016, 4(8):4251
    [15] Li L, Cabán-Acevedo M, Girard S N, et al. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Nanoscale, 2014, 6(4):2112
    [16] Mai L Q, Tian X C, Xu X, et al. Nanowire electrodes for electrochemical energy storage devices. Chem Rev, 2014, 114(23):11828
    [17] Zhang C F, Wang Z Y, Guo Z P, et al. Synthesis of MoS2-C one-dimensional nanostructures with improved lithium storage properties. ACS Appl Mater Interfaces, 2012, 4(7):3765
    [18] Xu X, Cai T W, Meng Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. J Power Sources, 2016, 331:366
    [19] Jin F Y, Wang Y. Topotactical conversion of carbon coated Febased electrodes on graphene aerogels for lithium ion storage. J Mater Chem A, 2015, 3(28):14741
    [20] Liu L, Yuan Z Z, Qiu C X, et al. A novel FeS2/CNT microspherical cathode material with enhanced electrochemical characteristics for lithium-ion batteries. Solid State Ionics, 2013, 241:25
    [21] Zhu Y J, Fan X L, Suo L M, et al. Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano, 2015, 10(1):1529
    [22] Lu J H, Lian F, Guan L L, et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages. J Mater Chem A, 2019, 7(3):991
    [23] Kahlweit M. Ostwald ripening of precipitates. Adv Colloid Interface Sci, 1975, 5(1):1
    [24] Xu X, Meng Z, Zhu X L, et al. Biomass carbon composited FeS 2 as cathode materials for high-rate rechargeable lithium-ion battery. J Power Sources, 2018, 380:12
    [25] Xu X J, Liu J, Liu Z B, et al. Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano, 2017, 11(9):9033
    [26] Zhang F F, Wang C L, Huang G, et al. FeS2@C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries. J Power Sources, 2016, 328:56
    [27] Pan G X, Cao F, Xia X H, et al. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries. J Power Sources, 2016, 332:383
    [28] Xu X, Cai T W, Meng Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. J Power Sources, 2016, 331:366
    [29] Zhang X C, Shyy W, Sastry A M. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc, 2007, 154(10):A910
  • 加载中
计量
  • 文章访问数:  507
  • HTML全文浏览量:  194
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-22

目录

    /

    返回文章
    返回