• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒度大小对赤铁矿和石英浮选分离的影响

李东 李正要 印万忠 孙春宝 寇珏 姚金 韩会丽

李东, 李正要, 印万忠, 孙春宝, 寇珏, 姚金, 韩会丽. 粒度大小对赤铁矿和石英浮选分离的影响[J]. 工程科学学报, 2020, 42(5): 586-594. doi: 10.13374/j.issn2095-9389.2019.06.06.006
引用本文: 李东, 李正要, 印万忠, 孙春宝, 寇珏, 姚金, 韩会丽. 粒度大小对赤铁矿和石英浮选分离的影响[J]. 工程科学学报, 2020, 42(5): 586-594. doi: 10.13374/j.issn2095-9389.2019.06.06.006
LI Dong, LI Zheng-yao, YIN Wan-zhong, SUN Chun-bao, KOU Jue, YAO Jin, HAN Hui-li. Effect of particle size on flotation separation of hematite and quartz[J]. Chinese Journal of Engineering, 2020, 42(5): 586-594. doi: 10.13374/j.issn2095-9389.2019.06.06.006
Citation: LI Dong, LI Zheng-yao, YIN Wan-zhong, SUN Chun-bao, KOU Jue, YAO Jin, HAN Hui-li. Effect of particle size on flotation separation of hematite and quartz[J]. Chinese Journal of Engineering, 2020, 42(5): 586-594. doi: 10.13374/j.issn2095-9389.2019.06.06.006

粒度大小对赤铁矿和石英浮选分离的影响

doi: 10.13374/j.issn2095-9389.2019.06.06.006
基金项目: 国家自然科学基金资助项目(51904020);中国博士后科学基金资助项目(2019M660466);中央高校基本科研业务费资助项目(FRF-TP-18-082A1)
详细信息
    通讯作者:

    E-mail: zyli0213@ustb.edu.cn

  • 中图分类号: TD923

Effect of particle size on flotation separation of hematite and quartz

More Information
  • 摘要: 通过浮选试验、DLVO理论计算、聚焦光束反射测量(FBRM)等研究了油酸钠浮选体系下粒度大小对赤铁矿和石英浮选分离的影响。人工混合矿浮选试验表明,窄粒级粗粒或中等粒级的赤铁矿−石英混合矿(CH&CQ和MH&CQ)的浮选效果较好,其中CH&CQ和MH&CQ的分选效率分别为85.49%和84.26%,明显高于全粒级混合矿(RH&RQ)的分选效率74.94%;但窄粒级的细粒赤铁矿−石英混合矿(FH&FQ)的浮选效果则较差,其分选效率只有54.98%。浮选动力学试验表明,赤铁矿的浮选速率和回收率不仅与赤铁矿的粒度有关,还受石英粒度的影响,细粒脉石矿物石英会降低赤铁矿的浮选速率和回收率。DLVO理论计算表明,当矿浆pH值为9.0时,石英与赤铁矿颗粒间的相互作用力为斥力,此时细粒石英很难“罩盖”在赤铁矿表面并通过这种“直接作用”的方式抑制赤铁矿浮选,这也与聚焦光束反射测量(FBRM)的测定结果基本一致;颗粒−气泡碰撞分析表明,在浮选过程中细粒石英可能通过“边界层效应”的方式跟随气泡升浮(夹带作用),影响赤铁矿颗粒与气泡间的碰撞及黏附,从而降低了赤铁矿的浮选速率和回收率。
  • 图  1  赤铁矿和石英的X射线衍射图。(a) 赤铁矿;(b) 石英

    Figure  1.  X-ray diffraction spectra of hematite and quartz: (a) hematite; (b) quartz

    图  2  矿物粒度的累积分布曲线。(a) 赤铁矿;(b) 石英

    Figure  2.  Cumulative particle distributions of minerals: (a) hematite; (b) quartz

    图  3  赤铁矿−石英混合矿浮选分离原理和药剂制度示意图

    Figure  3.  Schematic of the flotation separation principle and reagent regime for hematite–quartz mixtures

    图  4  聚焦光束反射测量系统示意图

    Figure  4.  Schematic of the focused beam reflectance measurement (FBRM) system

    图  5  粒度对赤铁矿−石英混合矿浮选分离的影响(pH,9.0;油酸钠,每吨400 g)

    Figure  5.  Influence of particle size on the separation of hematite and quartz (pH, 9.0; sodium oleate, 400 g per ton)

    图  6  石英粒度对粗粒级赤铁矿(CH)浮选的影响(pH,9.0;油酸钠,每吨400 g)

    Figure  6.  Influence of quartz particle size on the flotation of hematite (CH) (pH, 9.0; sodium oleate, 400 g per ton)

    图  7  石英粒度对中等粒级赤铁矿(MH)浮选的影响(pH,9.0;油酸钠,每吨400 g)

    Figure  7.  Influence of quartz particle size on the flotation of hematite (MH) (pH, 9.0; sodium oleate, 400 g per ton)

    图  8  石英粒度对细粒级赤铁矿(FH)浮选的影响(pH,9.0;油酸钠,每吨400 g)

    Figure  8.  Influence of quartz particle size on the flotation of hematite (FH) (pH, 9.0; sodium oleate, 400 g per ton)

    图  9  不同粒度组成的赤铁矿−石英混合矿的提质分离曲线(pH,9.0;油酸钠,每吨400 g)

    Figure  9.  Upgrading curves of hematite–quartz mixtures with different particle sizes (pH, 9.0; sodium oleate, 400 g per ton)

    图  10  矿物的Zeta电位与pH的关系曲线(油酸钠,30 mg·L−1

    Figure  10.  Relationship between zeta potentials and pH values (sodium oleate, 30 mg·L−1)

    图  11  赤铁矿与石英颗粒间的相互作用力VTD

    Figure  11.  Interaction energies VTD between hematite and quartz particles

    图  12  赤铁矿−石英混合矿的粒度分布特性随时间变化的关系曲线(pH, 9.0;搅拌速度,500 r·min−1;油酸钠(30 mg·L−1)在180 s处加入到矿浆中)

    Figure  12.  Particle/aggregate size distribution of hematite–quartz mixtures as a function of stirring time (pH, 9.0; stirring speed, 500 r·min−1; sodium oleate (30 mg·L−1) was added at 180 s)

    表  1  单矿物化学多元素分析结果(质量分数)

    Table  1.   Chemical element analysis results of single minerals %

    MineralsTFeFeOSiO2Al2O3MgOCaOPS
    Hematite68.170.431.650.280.040.080.020.05
    Quartz0.0299.220.040.05
    下载: 导出CSV
  • [1] 韩跃新, 高鹏, 李艳军, 等. 我国铁矿资源“劣质能用、优质优用”发展战略研究. 金属矿山, 2016, 45(12):2 doi: 10.3969/j.issn.1001-1250.2016.12.002

    Han Y X, Gao P, Li Y J, et al. Development strategies of available use of inferior quality and optimal use of high quality for domestic iron ore resources. Metal Mine, 2016, 45(12): 2 doi: 10.3969/j.issn.1001-1250.2016.12.002
    [2] 陈雯. 贫细杂难选铁矿石选矿技术进展. 金属矿山, 2010, 39(5):55

    Chen W. Technological process in processing low-grade fine-grained complicated refractory iron ores. Metal Mine, 2010, 39(5): 55
    [3] Peng Y L, Liang L, Tan J K, et al. Effect of flotation reagent adsorption by different ultra-fine coal particles on coal flotation. Int J Miner Process, 2015, 142: 17 doi: 10.1016/j.minpro.2014.12.005
    [4] Ni C, Xie G Y, Jin M G, et al. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Technol, 2016, 292: 210 doi: 10.1016/j.powtec.2016.02.004
    [5] Li W B, Zhou L B, Han Y X, et al. Effect of carboxymethyl starch on fine-grained hematite recovery by high-intensity magnetic separation: experimental investigation and theoretical analysis. Powder Technol, 2019, 343: 270 doi: 10.1016/j.powtec.2018.11.024
    [6] Ni C, Bu X N, Xia W C, et al. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement. Powder Technol, 2018, 339: 434 doi: 10.1016/j.powtec.2018.08.034
    [7] Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 doi: 10.1016/j.mineng.2009.12.006
    [8] 李东, 印万忠, 姚金, 等. 东鞍山含菱铁矿赤铁矿石分级浮选试验研究. 金属矿山, 2016, 45(12):51 doi: 10.3969/j.issn.1001-1250.2016.12.012

    Li D, Yin W Z, Yao J, et al. Classification flotation of Donganshan siderite-containing hematite ore. Metal Mine, 2016, 45(12): 51 doi: 10.3969/j.issn.1001-1250.2016.12.012
    [9] Thella J S, Mukherjee A K, Srikakulapu N G. Processing of high alumina iron ore slimes using classification and flotation. Powder Technol, 2012, 217: 418 doi: 10.1016/j.powtec.2011.10.058
    [10] 谢广元, 吴玲, 欧泽深, 等. 煤泥分级浮选工艺的研究. 中国矿业大学学报, 2005, 34(6):756 doi: 10.3321/j.issn:1000-1964.2005.06.016

    Xie G Y, Wu L, Ou Z S, et al. Research on fine coal classified flotation flowsheet. J China Univ Min Technol, 2005, 34(6): 756 doi: 10.3321/j.issn:1000-1964.2005.06.016
    [11] 邢耀文, 桂夏辉, 刘炯天, 等. 基于能量适配的分级浮选试验研究. 中国矿业大学学报, 2015, 44(5):923

    Xing Y W, Gui X H, Liu J T, et al. Experimental study of classified flotation based on energy input and distribution. J China Univ Min Technol, 2015, 44(5): 923
    [12] Xie G Y, Wu L, Ou Z S, et al. Research on fine coal classified flotation process and key technology. Procedia Earth Planet Sci, 2009, 1(1): 701 doi: 10.1016/j.proeps.2009.09.110
    [13] 姚孟齐. 晋宁低品位磷矿分级浮选试验研究[学位论文]. 昆明: 昆明理工大学, 2018

    Yao M Q. Research on Classification Flotation of Low-Grade Phosphorite in Jinning [Dissertation]. Kunming: Kunming University of Science and Technology, 2018
    [14] 周伟, 庾朝富, 王涛, 等. 煤泥分级浮选中分级工艺的研究. 选煤技术, 2013(6):34

    Zhou W, Yu C F, Wang T, et al. Research on sizing process of fine coal sized flotation. Coal Preparation Technol, 2013(6): 34
    [15] Xing Y W, Xu X H, Gui X H, et al. Effect of kaolinite and montmorillonite on fine coal flotation. Fuel, 2017, 195: 284 doi: 10.1016/j.fuel.2017.01.058
    [16] Li D, Yin W Z, Liu Q, et al. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation. Miner Eng, 2017, 114: 74 doi: 10.1016/j.mineng.2017.09.012
    [17] Yu Y X, Cheng G, Ma L Q, et al. Effect of agitation on the interaction of coal and kaolinite in flotation. Powder Technol, 2017, 313: 122 doi: 10.1016/j.powtec.2017.03.002
    [18] 邱冠周, 胡岳华, 王淀佐. 颗粒间的相互作用和细粒浮选. 长沙: 中南工业大学出版社, 1993

    Qiu G Z, Hu Y H, Wang D Z. Interaction of Particles and Flotation Techniques of Fine Particles. Changsha: Central South University of Technology Press, 1993
    [19] Yin W Z, Yang X S, Zhou D P, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 doi: 10.1016/S1003-6326(11)60762-0
    [20] Neethling S J, Cilliers J J. The entrainment of gangue into a flotation froth. Int J Miner Process, 2002, 64(2-3): 123 doi: 10.1016/S0301-7516(01)00067-9
    [21] Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  854
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回