• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有微米纤维碳的硅/石墨/碳复合材料的制备及在锂离子电池中的应用

安富强 何冬林 庞铮 李平

安富强, 何冬林, 庞铮, 李平. 具有微米纤维碳的硅/石墨/碳复合材料的制备及在锂离子电池中的应用[J]. 工程科学学报, 2019, 41(10): 1307-1314. doi: 10.13374/j.issn2095-9389.2019.06.08.001
引用本文: 安富强, 何冬林, 庞铮, 李平. 具有微米纤维碳的硅/石墨/碳复合材料的制备及在锂离子电池中的应用[J]. 工程科学学报, 2019, 41(10): 1307-1314. doi: 10.13374/j.issn2095-9389.2019.06.08.001
AN Fu-qiang, HE Dong-lin, PANG Zheng, LI Ping. Preparation of silicon/graphite/carbon composites with fiber carbon and their application in lithium-ion batteries[J]. Chinese Journal of Engineering, 2019, 41(10): 1307-1314. doi: 10.13374/j.issn2095-9389.2019.06.08.001
Citation: AN Fu-qiang, HE Dong-lin, PANG Zheng, LI Ping. Preparation of silicon/graphite/carbon composites with fiber carbon and their application in lithium-ion batteries[J]. Chinese Journal of Engineering, 2019, 41(10): 1307-1314. doi: 10.13374/j.issn2095-9389.2019.06.08.001

具有微米纤维碳的硅/石墨/碳复合材料的制备及在锂离子电池中的应用

doi: 10.13374/j.issn2095-9389.2019.06.08.001
基金项目: 

中国博士后科学基金资助项目(2018M631335);中央高校基本科研资助项目(FRF-TP-18-024A1)

详细信息
  • 中图分类号: TQ127

Preparation of silicon/graphite/carbon composites with fiber carbon and their application in lithium-ion batteries

  • 摘要: 以沥青为软碳原料,商业石墨的载体材料,通过高温热解法成功合成了硅/石墨/碳复合材料,同时原位生成了微米尺度的碳纤维.该硅/石墨/碳复合材料具有诸多优点,石墨片层堆叠之间的空隙为硅的体积膨胀提供了有效的空间,沥青热解碳材料的包覆能一定程度抑制硅基材料的体积效应和提高其电子电导率,同时微米级的碳纤维能提高材料的长程导电性和结构稳定性,从而极大的改善负极材料循环性能.通过电化学测试表明,硅/石墨/碳复合材料中硅/石墨/碳复合负极材料在200 mA·g-1电流密度下具有650 mA·h·g-1的可逆容量,在200 mA·g-1电流密度下经过500圈循环后容量保持率为92.8%,每圈的容量衰减率仅为0.014%,展现了优异的循环性能.
  • [1] Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries:a review. Energy Environ Sci, 2011, 4(9):3243
    [2] Shen X H, Tian Z Y, Fan R J, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J Energy Chem, 2018, 27(4):1067
    [3] Zuo X X, Zhu J, Müller-Buschbaum P, et al. Silicon based lithium-ion battery anodes:a chronicle perspective review. Nano Energy, 2017, 31:113
    [4] Liu N A, Huo K F, Mcdowell M T, et al. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep, 2013, 3:1919
    [5] Liu N, Lu Z D, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnol, 2014, 9(3):187
    [6] Chan C K, Patel R N, O'Connell M J, et al. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano, 2010, 4(3):1443
    [7] Shao D, Tang D P, Mai Y J, et al. Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J Mater Chem A, 2013, 1(47):15068
    [8] Shim H C, Kim I, Woo C S, et al. Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with a long-cycle life and high capacity. Nanoscale, 2017, 9(14):4713
    [9] Nguyen C C, Yoon T, Seo D M, et al. Systematic investigation of binders for silicon anodes:interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl Mater Interfaces, 2016, 8(19):12211
    [10] Zhao G Y, Zhang L, Meng Y F, et al. High storage performance of core-shell Si@C nanoparticles as lithium ion battery anodematerial. Mater Lett, 2013, 96:170
    [11] Cakan R D, Titirici M M, Antonietti M, et al. Hydrothermal carbon spheres containing silicon nanoparticles:synthesis and lithium storage performance. Chem Commun, 2008(32):3759
    [12] Goodenough J B, Park K S. The Li-ion rechargeable battery:a perspective. J Am Chem Soc, 2013, 135(4):1167
    [13] Jung Y S, Lee K T, Oh S M. Si-carbon core-shell composite anode in lithium secondary batteries. Electrochim Acta, 2007, 52(24):7061
    [14] Liang J W, Li X N, Zhu Y C, et al. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res, 2014, 8(5):1497
    [15] Huang X K, Yang J, Mao S, et al. Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv Mater, 2014, 26(25):4326
    [16] Zhang L, Rajagopalan R, Guo H P, et al. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries. Adv Funct Mater, 2016, 26(3):440
    [17] Yang L Y, Li H Z, Liu J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci Rep, 2015, 5:10908
    [18] Liu Y J, Tai Z X, Zhou T F, et al. An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for Lithium-ion batteries. Adv Mater, 2017, 29(44):1703028
    [19] Yang J P, Wang Y X, Chou S L, et al. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy, 2015, 18:133
    [20] Devarapalli R R, Szunerits S, Coffinier Y, et al. Glucose-derived porous carbon-coated silicon nanowires as efficient electrodes for aqueous micro-supercapacitors. ACS Appl Mater Interfaces, 2016, 8(7):4298
    [21] Peled E, Patolsky F, Golodnitsky D, et al. Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries. Nano Lett, 2015, 15(6):3907
    [22] Prosini P P, Cento C, Alessandrini F, et al. Electrochemical characterization of silicon nanowires as an anode for lithium batteries. Solid State Ionics, 2014, 260:49
    [23] Ren W F, Zhang Z L, Wang Y H, et al. Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. J Mater Chem A, 2015, 3(11):5859
    [24] Tao H C, Fan L Z, Qu X H. Facile synthesis of ordered porous Si@C nanorods as anode materials for Li-ion batteries. Electrochim Acta, 2012, 71:194
    [25] Wang W, Favors Z, Li C L, et al. Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries. Sci Rep, 2017, 7:44838
    [26] An W L, Gao B, Mei S X, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nature Commun, 2019, 10(1):1447
    [27] Cheng H, Xiao R, Bian H D, et al. Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries. Mater Chem Phys, 2014, 144(1-2):25
    [28] Qin Y L, Li F, Bai X B, et al. A novel Si film with Si nanocrystals embedded in amorphous matrix on Cu foil as anode for lithium ion batteries. Mater Lett, 2015, 138:104
    [29] Li J Y, Li G, Zhang J, et al. Rational design of robust Si/C microspheres for high-tap-density anode materials. ACS Appl Mater Interfaces, 2019, 11(4):4057
    [30] Xu Q, Li J Y, Sun J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater, 2017, 7(3):1601481
    [31] Jia H P, Zheng J M, Song J H, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, 50:589
    [32] Ko M, Chae S, Jeong S, et al. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano, 2014, 8(8):8591
    [33] Zhou X S, Yin Y X, Wan L J, et al. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem Commun, 2012, 48(16):2198
    [34] Liu J, Kopold P, van Aken P A, et al. Energy storage materials from nature through nanotechnology:a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew Chem Int Ed, 2015, 54(33):9632
    [35] Eom K, Joshi T, Bordes A, et al. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode., 2014, 249:118
  • 加载中
计量
  • 文章访问数:  624
  • HTML全文浏览量:  201
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-08

目录

    /

    返回文章
    返回