何祖东, 耿超, 邱佳佳, 杨玺, 席风硕, 李绍元, 马文会. 一步纳米银催化刻蚀法制备多孔硅纳米线阵列[J]. 工程科学学报, 2019, 41(7): 922-928. DOI: 10.13374/j.issn2095-9389.2019.07.011
引用本文: 何祖东, 耿超, 邱佳佳, 杨玺, 席风硕, 李绍元, 马文会. 一步纳米银催化刻蚀法制备多孔硅纳米线阵列[J]. 工程科学学报, 2019, 41(7): 922-928. DOI: 10.13374/j.issn2095-9389.2019.07.011
HE Zu-dong, GENG Chao, QIU Jia-jia, YANG Xi, XI Feng-shuo, LI Shao-yuan, MA Wen-hui. Porous silicon nanowire arrays fabrication through one-step metal-assisted chemical etching[J]. Chinese Journal of Engineering, 2019, 41(7): 922-928. DOI: 10.13374/j.issn2095-9389.2019.07.011
Citation: HE Zu-dong, GENG Chao, QIU Jia-jia, YANG Xi, XI Feng-shuo, LI Shao-yuan, MA Wen-hui. Porous silicon nanowire arrays fabrication through one-step metal-assisted chemical etching[J]. Chinese Journal of Engineering, 2019, 41(7): 922-928. DOI: 10.13374/j.issn2095-9389.2019.07.011

一步纳米银催化刻蚀法制备多孔硅纳米线阵列

Porous silicon nanowire arrays fabrication through one-step metal-assisted chemical etching

  • 摘要: 通过采用一步纳米金属颗粒辅助化学刻蚀法(MACE)成功制备了多孔硅纳米线, 并主要研究了硅片掺杂浓度、氧化剂AgNO3浓度以及HF浓度对硅纳米线阵列形貌结构的影响规律. 研究结果表明: 较高的掺杂浓度更有利于刻蚀反应的发生和硅纳米线阵列的形成, 这是由于高掺杂浓度在硅片表面引入了更多的杂质和缺陷, 同时高掺杂浓度的硅片与溶液界面形成的肖特基势垒更低, 更容易氧化溶解形成硅纳米线阵列; 在一步金属辅助化学刻蚀法制备多孔硅纳米线阵列的过程中, 溶液中AgNO3浓度对于其刻蚀形貌和结构起到主要作用, AgNO3浓度过低或过高时, 硅片表面会形成腐蚀凹坑或坍塌的纳米线簇, AgNO3浓度为0.02 mol·L-1时, 硅纳米线会生长变长, 最终形成多孔硅纳米线阵列. 随着硅纳米线的增长, 纳米线之间的毛细应力会使得一些纳米线顶部出现团聚现象; 且当HF溶液浓度超过4.6 mol·L-1时, 随着HF酸浓度的增加, 硅纳米线的长度随之增加. 同时, 硅纳米线的顶部有多孔结构生成, 且硅纳米线的孔隙率随HF浓度的增加而增多, 这是由于纳米线顶部大量的Ag+随机形核, 导致硅纳米线侧向腐蚀的结果. 最后, 根据实验现象提出相应模型对多孔硅纳米线的形成过程进行了解释, 归因于银离子的沉积和硅基底的氧化溶解.

     

    Abstract: One-step metal-assisted chemical etching (MACE) was used to fabricate porous silicon nanowire arrays. Also, the effects of doping level, AgNO3 concentration, and HF concentration on the morphology and structure of porous silicon nanowire were investigated. The results show that the higher doping level is beneficial for etching the silicon wafer and forming silicon nanowire arrays. This is because the higher doping level introduces more impurities and defects on the surface of the silicon wafer, and at the same time, the Schottky barrier between the silicon wafer with the higher doping level and the solution is lower. Thus, the silicon wafer is easier to oxidate to form nanowire arrays. The AgNO3 concentration plays a critical role in the fabrication of the porous silicon nanowire arrays during the one-step MACE process. If AgNO3 concentration is too low or too high, corrosion pits and collapsed clusters of nanowires could form on the surface of the silicon wafer. When AgNO3 concentration was 0.02 mol·L-1, silicon nanowires grew and became longer, eventually forming a porous array of silicon nanowire. In the meantime, as silicon nanowires grew, capillary stress between nanowires caused agglomeration at the top of some nanowires. Furthermore, when HF solution concentration exceeded 4.6 mol·L-1, the length of silicon nanowire increased with increasing HF concentration. Furthermore, a porous structure was formed on top the silicon nanowire, and the porosity of the silicon nanowires increased with increasing HF concentration. This was due to a large number of Ag+ random nucleations at the top of the nanowires, and lateral etching of the silicon nanowires occurred. In the end, the formation process of the porous silicon nanowires is explained by a model based on the experimental phenomena. It is attributed to the deposition of silver ions and the oxidation of dissolved silicon substrates.

     

/

返回文章
返回