• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能化新型耐火材料的设计、制备及应用

王恩会 陈俊红 侯新梅

王恩会, 陈俊红, 侯新梅. 功能化新型耐火材料的设计、制备及应用[J]. 工程科学学报, 2019, 41(12): 1520-1526. doi: 10.13374/j.issn2095-9389.2019.07.04.033
引用本文: 王恩会, 陈俊红, 侯新梅. 功能化新型耐火材料的设计、制备及应用[J]. 工程科学学报, 2019, 41(12): 1520-1526. doi: 10.13374/j.issn2095-9389.2019.07.04.033
WANG En-hui, CHEN Jun-hong, HOU Xin-mei. Design, preparation, and application of new functional refractories[J]. Chinese Journal of Engineering, 2019, 41(12): 1520-1526. doi: 10.13374/j.issn2095-9389.2019.07.04.033
Citation: WANG En-hui, CHEN Jun-hong, HOU Xin-mei. Design, preparation, and application of new functional refractories[J]. Chinese Journal of Engineering, 2019, 41(12): 1520-1526. doi: 10.13374/j.issn2095-9389.2019.07.04.033

功能化新型耐火材料的设计、制备及应用

doi: 10.13374/j.issn2095-9389.2019.07.04.033
基金项目: 国家自然科学基金资助项目(51904021,51974021,51874027);中央高校基本科研业务费资助项目(FRF-TP-19-008A1);国家优秀青年基金资助项目(51522402)
详细信息
    通讯作者:

    E-mail:houxinmei01@126.com

  • 中图分类号: TG142.71

Design, preparation, and application of new functional refractories

More Information
  • 摘要: 围绕两种新型耐火材料展开,即钢包精炼用高性能低碳镁碳耐火材料以及超低氧钢用耐火材料,初步实验表明,将大尺寸的碳硅化铝(Al4SiC4)引入到镁碳砖(MgO−C)中不仅可以提高其抗氧化能力,又能对含碳耐火材料氧化后的疏松结构进行修复,有望成为新一代钢包精炼用高性能低碳镁碳耐火材料;CaO−MgO−Al2O3(CMA)材料兼具优异的热机械和耐渣侵性能的同时,还可以在服役过程产生低熔点精炼渣相,具备净化钢水的潜力。可以预见,上述功能化新型耐火材料有望为高品质钢的进一步发展提供有力材料支撑。
  • 图  1  晶体结构示意图. (a) Al4SiC4;(b)SiC单元晶体;(c) Al4C3单元 晶体

    Figure  1.  Schematic diagram of the crystal structure: (a) Al4SiC4; (b) SiC unit; (c) Al4C3 unit

    图  2  典型的Al4SiC4陶瓷形貌. (a)氧化表面;(b)横截面

    Figure  2.  Typical morphologies of Al4SiC4 ceramic: (a) oxidized surface; (b) oxidized cross-section

    图  3  1900 ℃条件下Al–Si–C–O体系气相分压图[22]

    Figure  3.  Equilibrium partial pressures of gases as a function of PCO for 1900 ℃[22]

    图  4  1900 ℃条件下碳热还原制备Al4SiC4材料的物相分析结果

    Figure  4.  XRD pattern of Al4SiC4 synthesized via carbothermic method at 1900 ℃

    图  5  碳热还原法在1900 ℃合成Al4SiC4晶体的扫描电镜照片

    Figure  5.  SEM images of Al4SiC4 synthesized via carbothermic method at 1900 ℃

    图  6  不同温度下Al4SiC4晶体的结构演变. (a) 1400 ℃;(b) 1500 ℃;(c) 1600 ℃

    Figure  6.  Evolution of Al4SiC4 crystal at different temperatures: (a) 1400 ℃;(b) 1500 ℃;(c) 1600 ℃

    图  7  体系中生成中的MgAl2O4的形貌. (a) 1400 ℃;(b) 1500 ℃;(c) 1600 ℃

    Figure  7.  Morphologies of MgAl2O4 in MgO–C system with Al4SiC4 added at different temperatures: (a) 1400 ℃; (b) 1500 ℃; (c) 1600 ℃

    图  8  1650 ℃条件下CaO–MgO–Al2O3三元相图(部分)

    Figure  8.  Ternary phase diagram of CaO–MgO–Al2O3 at 1650 ℃ (partial)

    图  9  晶体结构示意图. (a) CA6;(b) MA;(c) CM2A8;(d) C2M2A14

    Figure  9.  Schematic diagram of crystal structure: (a) CA6; (b) MA; (c) CM2A8; (d) C2M2A14

    图  10  1700 ℃热压后CM2A8的X射线衍射图谱(a)、形貌表征(b)和结晶状态表征(c)

    Figure  10.  CM2A8 ceramic after hot-press sintering at 1700 ℃: (a) XRD pattern; (b) morphological characterization; (c) crystalline state characterization

    图  11  CM2A8的抗渣侵蚀实验表征. (a)抗LF渣侵蚀;(b)抗RH渣侵蚀

    Figure  11.  Resistance behavior of CM2A8: (a) LF slag; (b) RH slag

  • [1] Li M, Wang X C, Duan J H, et al. Formation and controlling of Type-D inclusions in bearing steel. Chin J Eng, 2018, 40(增刊1): 31

    李明, 王新成, 段加恒, 等. 轴承钢中D类夹杂物的形成与控制. 工程科学学报, 2018, 40(增刊1):31)
    [2] 王敏, 郝阳, 马铖佑, 等. 钢中非金属夹杂物形态对其去除行为的影响. 工程科学学报, 2016, 38(1):34

    Wang M, Hao Y, Ma C Y, et al. Effect of the morphologies of non-metallic inclusions on their removal behavior. Chin J Eng, 2016, 38(1): 34
    [3] 姜敏, 王昆鹏, 侯泽旺, 等. 低氧特殊钢中大尺寸DS类夹杂物生成机理. 工程科学学报, 2016, 38(6):780

    Jiang M, Wang K P, Hou Z W, et al. Formation mechanism of oversized DS-type inclusions in low oxygen special steel. Chin J Eng, 2016, 38(6): 780
    [4] Zhang X W, Zhang L F, Yang W, et al. Comparison of 2D and 3D morphology of non-metallic inclusions in steel using different methods. Metall Res Technol, 2017, 114(1): 113 doi: 10.1051/metal/2016056
    [5] Stampa E, Cipparrone M. Detection of harmful inclusions in steels for tire cord. Wire J Int, 1987, 20(3): 44
    [6] 姚华柏, 姚苏哲, 骆昶, 等. 镁碳砖的研究现状与发展趋势. 工程科学学报, 2018, 40(3):253

    Yao H B, Yao S Z, Luo C, et al. Current research and developing trend of MgO-C bricks. Chin J Eng, 2018, 40(3): 253
    [7] 叶小叶. 抗氧化剂对镁碳耐火砖抗氧化性的影响. 耐火与石灰, 2008, 33(5):36

    Ye X Y. Effects of antioxidants on oxidation resistance of MgO−C refractory brick. Refract Lime, 2008, 33(5): 36
    [8] Ko Y C. Influence of the characteristics of spinels on the slag resistance of Al2O3−MgO and Al2O3-spinel castables. J Am Ceram Soc, 2010, 83(9): 2333
    [9] Chen S K, Cheng M Y, Lin S J, et al. Thermal characteristics of Al2O3−MgO and Al2O3-spinelcastables for steel ladles. Ceram Int, 2002, 28(7): 811 doi: 10.1016/S0272-8842(02)00047-0
    [10] 钟香崇. 展望新一代优质高效耐火材料. 耐火材料, 2003, 37(1):1 doi: 10.3969/j.issn.1001-1935.2003.01.001

    Zhong X C. Looking ahead― a new generation of high performance refractory ceramics. Refractories, 2003, 37(1): 1 doi: 10.3969/j.issn.1001-1935.2003.01.001
    [11] Lindskog N, Kjellberg B. Removal of oxide inclusions resulting from strong deoxidizers. Scand J Metall, 1977, 6(2): 49
    [12] 王恩会, 陈俊红, 侯新梅. 钢包工作衬用耐火材料的研究现状及最新进展. 工程科学学报, 2019, 41(6):695

    Wang E H, Chen J H, Hou X M. Current research and latest developments on refractories used as ladle linings. Chin J Eng, 2019, 41(6): 695
    [13] Liao T, Wang J Y, Zhou Y Y. Atomistic deformation modes and intrinsic brittleness of Al4SiC4: a first-principles investigation. Phys Rev B, 2006, 74(17): 174112 doi: 10.1103/PhysRevB.74.174112
    [14] Barczak V J. Optical and X-ray powder diffraction data for Al4SiC4. J Am Ceram Soc, 1961, 44(6): 299 doi: 10.1111/j.1151-2916.1961.tb15383.x
    [15] Yamamoto O, Ohtani M, Sasamoto T. Preparation and oxidation of Al4SiC4. J Mater Res, 2002, 17(4): 774 doi: 10.1557/JMR.2002.0113
    [16] Zhang S W, Yamaguchi A. Effect of Al4SiC4 addition to carbon-containing refractories. J Ceram Soc Jpn, 1995, 103(1195): 235 doi: 10.2109/jcersj.103.235
    [17] Yamaguchi A, Zhang S W. Synthesis and some properties of Al4SiC4. J Ceram Soc Jpn, 1995, 103(1193): 20 doi: 10.2109/jcersj.103.20
    [18] 刘会林. Al2O3−MgO耐火浇注料中原位尖晶石形成机理的基础与应用. 耐火与石灰, 2013, 38(5):46 doi: 10.3969/j.issn.1673-7792.2013.05.013

    Liu H L. The formation mechanism and application of in-situ spinel in Al2O3−MgO refractory castable. Refract Lime, 2013, 38(5): 46 doi: 10.3969/j.issn.1673-7792.2013.05.013
    [19] Itatani K, Takahashi F, Aizawa M, et al. Densification and microstructural developments during the sintering of aluminium silicon carbide. J Mater Sci, 2002, 37(2): 335 doi: 10.1023/A:1013604429508
    [20] Yamamoto O. Effect of triethanolamine on low-temperature preparation of aluminum silicon carbide. Solid State Sci, 2003, 5(2): 277 doi: 10.1016/S1293-2558(02)00058-4
    [21] Inoue K, Yamaguchi A. Synthesis of Al4SiC4. J Am Ceram Soc, 2003, 86(6): 1028 doi: 10.1111/j.1151-2916.2003.tb03414.x
    [22] Xing X M, Li B, Chen J H, et al. Formation mechanism of large size plate-like Al4SiC4 grains by a carbothermal reduction method. Cryst Eng Comm, 2018, 20(10): 1399 doi: 10.1039/C7CE02193C
    [23] Xing X M, Chen J H, Bei G P, et al. Synthesis of Al4SiC4 powders via carbothermic reduction: reaction and grain growth mechanisms. J Adv Ceram, 2017, 6(4): 351 doi: 10.1007/s40145-017-0247-z
    [24] Yao H B, Xing X M, Wang E H, et al. Oxidation behavior and mechanism of Al4SiC4 in MgO−C−Al4SiC4 system. Coatings, 2017, 7(7): 85 doi: 10.3390/coatings7070085
    [25] Hasegawa M, Itatani K, Aizawa M, et al. Low-temperature synthesis of aluminum silicon carbide using ultrafine aluminum carbide and silicon carbide powders. J Am Ceram Soc, 1996, 79(1): 275 doi: 10.1111/j.1151-2916.1996.tb07909.x
    [26] Gaballa O, Cook B, Russell A. Formation, densification, and selected mechanical properties of hot pressed Al4SiC4, Al4SiC4 with 30vol.% TiC. Ceram Int, 2011, 37(8): 3117 doi: 10.1016/j.ceramint.2011.05.050
    [27] Inoue K, Mori S, Yamaguchi A. Thermal conductivity and temperature dependence of linear thermal expansion coefficient of Al4SiC4 sintered bodies prepared by pulse electronic current sintering. J Ceram Soc Jpn, 2003, 111(1293): 348 doi: 10.2109/jcersj.111.348
    [28] 邢新明. Al4SiC4的合成及其在MgO−C体系中的演变研究[学位论文]. 北京: 北京科技大学, 2018

    Xing X M. Synthesis of Al4SiC4 Powder and Its Evolution Behavior in MgO−C System[Dissertation]. Beijing: University of Science and Technology Beijing, 2018
    [29] Göbbels M, Woermann E, Jung J. The Al-rich part of the system CaO−Al2O3−MgO. Part I. phase relationships. J Solid State Chem, 1995, 120(2): 358 doi: 10.1006/jssc.1995.1420
    [30] Iyi N, Göbbels M, Matsui Y. The Al-Rich part of the system CaO−Al2O3−MgO. Part II. Structure refinement of two new magnetoplumbite-related phases. J. Solid State Chem, 1995, 120(2): 364 doi: 10.1006/jssc.1995.1421
    [31] Chen J H, Yan M W, Su J D, et al. Controllable preparation of Al2O3-MgO·Al2O3-CaO·6Al2O3(AMC) composite with improved slag penetration resistance. Int J Appl Ceram Technol, 2016, 13(1): 33 doi: 10.1111/ijac.12427
    [32] Li B, Chen H Y, Chen J H, et al. Preparation, growth mechanism and slag resistance behavior of ternary Ca2Mg2Al28O46(C2M2A14). Int J Appl Ceram Technol, 2019, 16(3): 1126 doi: 10.1111/ijac.13167
    [33] Li B, Li G Q, Chen H Y, et al. Physical and mechanical properties of hot-press sintering ternary CM2A8(CaMg2Al16O27) and C2M2A14(Ca2Mg2Al28O46) ceramics. J Adv Ceram, 2018, 7(3): 229 doi: 10.1007/s40145-018-0274-4
  • 加载中
图(11)
计量
  • 文章访问数:  727
  • HTML全文浏览量:  553
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-04
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回