-
摘要: 高熵材料是近年来出现的一种新型材料,具有高强度、高硬度、良好耐腐蚀和优异的高温组织稳定性等性能,在航空航天、高温以及先进核能等领域展现了广阔的应用前景,引起国际材料领域的广泛关注,相关研究也取得了很大进展。粉末冶金作为一种高性能金属基和陶瓷复合材料的先进制备技术,可以获得纳米晶和过饱和固溶体等亚稳材料,同时也可用于传统熔炼法较难制备的具有特殊结构和性能的材料,近些年来,粉末冶金技术在高熵材料制备中得到广泛应用。本文从高熵材料的应用理论出发,针对目前高熵材料粉体制备方法、块体成型以及粉末冶金制备的典型高熵材料三个方面予以综述,着重阐述了高熵材料的力学性能和其变形行为特点,同时展望了高熵材料的未来发展趋势。Abstract: High-entropy materials (HEMs) designed with a new material design philosophy have recently emerged as a new type of advanced materials. In contrast to traditional alloys where one or two elements dominate the structural composition, HEMs comprise multiprincipal metallic or metalloid elements, generally ≥5 and in equiatomic or near-equiatomic ratios, thereby possessing high mixing entropy and generally forming a single-phase solid solution structure during solidification process. Because of their unique atomic structures, HEMs exhibit excellent properties such as high strength, hardness, corrosion resistance and structural stability at elevated temperatures. Hence, HEMs have great potential to be utilized in various high-tech areas, such as aerospace, high-temperature and nuclear energy fields, etc. HEMs have sparked great interests in the fields of materials and substantial progress has been made over the years. Powder metallurgy (PM) is an advanced technology that is often used to fabricate high-performance metal-based and ceramic composite materials possessing a metastable structure, such as nanocrystalline or supersaturated solid solution phases. In particular, it can also be applied to synthesize advanced materials with unique structures and properties that are difficult to achieve using conventional casting methods. Recently, PM has been extensively applied in studying HEMs, thereby considerably expanding their application range. In this review paper, we first introduce the concept and theories related to HEMs and briefly summarize research activities and progresses made with regards to the applications of PM in HEMs, including synthesis methods of powders, formation of bulk HEMs, and typical HEMs (i.e., nanocrystalline high-entropy alloys (HEAs), refractory HEAs, lightweight HEAs, dispersion strengthened HEAs, and high-entropy ceramics) fabricated using PM. In particular, we place emphasis on the mechanical properties and deformation behaviors of HEMs, specifically, the strengthening mechanisms in some typical HEAs fabricated by PM. Finally, the future prospects of HEMs are also briefly outlined.
-
Key words:
- high-entropy materials /
- powder metallurgy /
- preparation /
- molding /
- application
-
图 3 (a) CoCrFeNi 高熵合金 透射明场像;(b) 5%Y2O3‒CoCrFeNi 高熵合金透射明场像;(c) 5%Y2O3‒CoCrFeNi 高熵合金的扫描透射电子显微镜‒高角度环形暗场像;(d) 是沿着(c) 图的白色箭头的能量色散X射线能谱[55]
Figure 3. (a) TEM bright filed image of CoCrFeNi HEA; (b) TEM bright filed image of 5% Y2O3‒CoCrFeNi HEA; (c) high angle ring dark field image-scanning transmission electron microscope (HAADF-STEM) image of 5%Y2O3‒CoCrFeNi HEA after SPS; (d) EDX of the section along the white arrow drawn in Fig.4(c)[55]
-
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567 [2] Yeh J W. Alloy design strategies and future trends in high-entropy alloys. JOM, 2013, 65(12): 1759 doi: 10.1007/s11837-013-0761-6 [3] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153 doi: 10.1126/science.1254581 [4] Ma S G, Zhang S F, Qiao J W, et al. Superior high tensile elongation of a single-crystal FeNiCoCrAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics, 2014, 54: 104 doi: 10.1016/j.intermet.2014.05.018 [5] Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd, 2011, 509(20): 6043 doi: 10.1016/j.jallcom.2011.02.171 [6] Han Z D, Chen N, Zhao S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 2017, 84: 153 doi: 10.1016/j.intermet.2017.01.007 [7] Feuerbacher M, Heidelmann M, Thomas C. Hexagonal high-entropy alloys. Mater Res Lett, 2015, 3(1): 1 doi: 10.1080/21663831.2014.951493 [8] He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater, 2014, 62: 105 doi: 10.1016/j.actamat.2013.09.037 [9] Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys, 2012, 132(2-3): 233 doi: 10.1016/j.matchemphys.2011.11.021 [10] 胡英, 陈学让, 吴树森. 物理化学(上册). 2版. 北京: 人民教育出版社, 1982Hu Y, Chen X R, Wu S S. Physical Chemistry (Volume 1). 2nd Ed. Beijing: People's Education Press, 1982. [11] Wang S Q, Chen K H, Chen L, et al. Effect of Al and Si additions on microstructure and mechanical properties of TiN coatings. J Cent South Univ Technol, 2011, 18(2): 310 doi: 10.1007/s11771-011-0696-4 [12] Nagase T, Rack P D, Noh J H, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics, 2015, 59: 32 doi: 10.1016/j.intermet.2014.12.007 [13] Zhang F X, Zhao S J, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy. Phys Rev Lett, 2017, 118(20): 205501 doi: 10.1103/PhysRevLett.118.205501 [14] Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc Nat Acad Sci USA, 2018, 115(36): 8919 doi: 10.1073/pnas.1808660115 [15] Yim D, Jang M J, Bae J W, et al. Compaction behavior of water-atomized CoCrFeMnNi high-entropy alloy powders. Mater Chem Phys, 2018, 210: 95 doi: 10.1016/j.matchemphys.2017.06.013 [16] Moravcik I, Gouvea L, Hornik V, et al. Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scripta Mater, 2018, 157: 24 doi: 10.1016/j.scriptamat.2018.07.034 [17] Braeckman B R, Boydens F, Hidalgo H, et al. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 2015, 580: 71 doi: 10.1016/j.tsf.2015.02.070 [18] Xiang S, Luan H W, Wu J, et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. J Alloys Compd, 2019, 773: 387 doi: 10.1016/j.jallcom.2018.09.235 [19] Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol, 2004, 188-189: 193 doi: 10.1016/j.surfcoat.2004.08.023 [20] Lv Y K, Hu R Y, Yao Z H, et al. Cooling rate effect on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys. Mater Des, 2017, 132: 392 doi: 10.1016/j.matdes.2017.07.008 [21] Huo W Y, Zhou H, Fang F, et al. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater Des, 2017, 134: 226 doi: 10.1016/j.matdes.2017.08.030 [22] Seifi M, Li D Y, Yong Z, et al. Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. JOM, 2015, 67(10): 2288 doi: 10.1007/s11837-015-1563-9 [23] Yang C C, Chau J L H, Weng C J, et al. Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process. Mater Chem Phys, 2017, 202: 151 doi: 10.1016/j.matchemphys.2017.09.014 [24] Kao Y F, Chen T J, Chen S K, et al. Microstructure and mechanical property of as-cast, -homogenized, and-deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys. J Alloys Compd, 2009, 488(1): 57 doi: 10.1016/j.jallcom.2009.08.090 [25] Liu Y, Wang J S, Fang Q H, et al. Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics, 2016, 68: 16 doi: 10.1016/j.intermet.2015.08.012 [26] Zhang K B, Fu Z Y, Zhang J Y, et al. Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J Alloys Compd, 2010, 495(1): 33 doi: 10.1016/j.jallcom.2009.12.010 [27] Fang S C, Chen W P, Fu Z Q. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater Des, 2014, 54: 973 doi: 10.1016/j.matdes.2013.08.099 [28] Pradeep K G, Wanderka N, Choi P, et al. Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater, 2013, 61(12): 4696 doi: 10.1016/j.actamat.2013.04.059 [29] Long Y, Liang X B, Su K, et al. A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties. J Alloys Compd, 2019, 780: 607 doi: 10.1016/j.jallcom.2018.11.318 [30] Singh M P, Srivastava C. Synthesis and electron microscopy of high entropy alloy nanoparticles. Mater Lett, 2015, 160: 419 doi: 10.1016/j.matlet.2015.08.032 [31] Yao Y G, Huang Z N, Xie P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359(6383): 1489 doi: 10.1126/science.aan5412 [32] Bu L Z, Zhang N, Guo S J, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, 2016, 354(6318): 1410 doi: 10.1126/science.aah6133 [33] Frey N A, Peng S, Cheng K, et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev, 2009, 38(9): 2532 doi: 10.1039/b815548h [34] Chen P C, Liu M, Du J S, et al. Interface and heterostructure design in polyelemental nanoparticles. Science, 2019, 363(6430): 959 doi: 10.1126/science.aav4302 [35] Chen P C, Liu X L, Hedrick J L, et al. Polyelemental nanoparticle libraries. Science, 2016, 352(6293): 1565 doi: 10.1126/science.aaf8402 [36] Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci, 2006, 41(3): 763 doi: 10.1007/s10853-006-6555-2 [37] Varalakshmi S, Rao G A, Kamaraj M, et al. Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. J Mater Sci, 2010, 45(19): 5158 doi: 10.1007/s10853-010-4246-5 [38] Liu B, Wang J S, Liu Y, et al. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics, 2016, 75: 25 doi: 10.1016/j.intermet.2016.05.006 [39] Du C C, Jin S B, Fang Y, et al. Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance. Nat Commun, 2018, 9(1): 5389 doi: 10.1038/s41467-018-07712-x [40] Youssef K M, Scattergood R O, Murty K L, et al. Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scripta Mater, 2006, 54(2): 251 doi: 10.1016/j.scriptamat.2005.09.028 [41] Xin S W, Zhang M, Yang T T, et al. Ultrahard bulk nanocrystalline VNbMoTaW high-entropy alloy. J Alloys Compd, 2018, 769: 597 doi: 10.1016/j.jallcom.2018.07.331 [42] Pohan R M, Gwalani B, Lee J, et al. Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy. Mater Chem Phys, 2018, 210: 62 doi: 10.1016/j.matchemphys.2017.09.013 [43] Fu Z Q, Chen W P, Wen H M, et al. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5high-entropy alloy. Acta Mater, 2016, 107: 59 doi: 10.1016/j.actamat.2016.01.050 [44] Senkov O N, Semiatin S L. Microstructure and properties of a refractory high-entropy alloy after cold working. J Alloys Compd, 2015, 649: 1110 doi: 10.1016/j.jallcom.2015.07.209 [45] 高楠. 粉末冶金TiVNbTa(Al)难熔高熵合金的制备、显微组织及力学性能[学位论文]. 广州: 华南理工大学, 2018Gao N. Preparation, Microstructure and Mechanical Properties of Powder Metallurgy TiVNbTa(Al) Refractory High Entropy Alloy[Dissertation]. Guangzhou: South China University of Technology, 2018 [46] Yang X, Zhang Y, Liaw P K. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng, 2012, 36(6): 292 [47] Youssef K M, Zaddach A J, Niu C N, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett, 2015, 3(2): 95 doi: 10.1080/21663831.2014.985855 [48] Maulik O, Kumar V. Synthesis of AlFeCuCrMgx (x=0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater Charact, 2015, 110: 116 doi: 10.1016/j.matchar.2015.10.025 [49] Gilman P S, Benjamin J S. Mechanical alloying. Ann Rev Mater Sci, 1983, 13(1): 279 doi: 10.1146/annurev.ms.13.080183.001431 [50] Zhou X S, Li C, Yu L M, et al. Effects of Ti addition on microstructure and mechanical property of spark-plasma-sintered transformable 9Cr-ODS steels. Fusion Eng Des, 2018, 135: 88 doi: 10.1016/j.fusengdes.2018.07.019 [51] Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544(7651): 460 doi: 10.1038/nature22032 [52] Dobeš F, Hadraba H, Chlup Z, et al. Compressive creep behavior of an oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloy. Mater Sci Eng A, 2018, 732: 99 doi: 10.1016/j.msea.2018.06.108 [53] de Castro V, Leguey T, Monge M A, et al. Mechanical dispersion of Y2O3 nanoparticles in steel EUROFER 97: process and optimisation. J Nucl Mater, 2003, 322(2-3): 228 doi: 10.1016/S0022-3115(03)00330-1 [54] Zinkle S J, Ghoniem N M. Operating temperature windows for fusion reactor structural materials. Fusion Eng Des, 2000, 51-52: 55 doi: 10.1016/S0920-3796(00)00320-3 [55] Jia B, Liu X J, Wang H, et al. Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion. Sci China Technol Sci, 2018, 61(2): 179 doi: 10.1007/s11431-017-9115-5 [56] Ukai S, Harada M, Okada H, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. J Nucl Mater, 1993, 204: 65 doi: 10.1016/0022-3115(93)90200-I [57] Okuda T, Fujiwara M. Dispersion behaviour of oxide particles in mechanically alloyed ODS steel. J Mater Sci Lett, 1995, 14(22): 1600 doi: 10.1007/BF00455428 [58] Hadraba H, Chlup Z, Dlouhy A, et al. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater Sci Eng A, 2017, 689: 252 doi: 10.1016/j.msea.2017.02.068 [59] Gwalani B, Pohan R M, Lee J, et al. High-entropy alloy strengthened by in situ formation of entropy-stabilized nano-dispersoids. Sci Rep, 2018, 8(1): 14085 doi: 10.1038/s41598-018-32552-6 [60] Gwalani B, Pohan R M, Waseem O A, et al. Strengthening of Al0.3CoCrFeMnNi-based ODS high entropy alloys with incremental changes in the concentration of Y2O3. Scripta Mater, 2019, 162: 477 doi: 10.1016/j.scriptamat.2018.12.021 [61] Dou P, Kimura A, Kasada R, et al. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition. J Nucl Mater, 2014, 444(1-3): 441 doi: 10.1016/j.jnucmat.2013.10.028 [62] Dou P, Kimura A, Kasada R, et al. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition. J Nucl Mater, 2017, 485: 189 doi: 10.1016/j.jnucmat.2016.12.001 [63] Yang S F, Zhang Y, Yan X, et al. Deformation twins and interface characteristics of nano-Al2O3 reinforced Al0.4FeCrCo1.5NiTi0.3 high entropy alloy composites. Mater Chem Phys, 2018, 210: 240 doi: 10.1016/j.matchemphys.2017.11.037 [64] Fu Z Q, Jiang L, Wardini J L, et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength. Sci Adv, 2018, 4(10): 8712 doi: 10.1126/sciadv.aat8712 [65] Rogal Ł, Kalita D, Tarasek A, et al. Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J Alloys Compd, 2017, 708: 344 doi: 10.1016/j.jallcom.2017.02.274 [66] Wang J W, Liu B, Liu C T, et al. Strengthening mechanism in a high-strength carbon-containing powder metallurgical high entropy alloy. Intermetallics, 2018, 102: 58 doi: 10.1016/j.intermet.2018.07.016 [67] Dong J X, Xie X S, Thompson R G. The influence of sulfur on stress-rupture fracture in inconel 718 superalloys. Metall Mater Trans A, 2000, 31(9): 2135 doi: 10.1007/s11661-000-0131-1 [68] Chen K, Zhao L R, Tse J S. Sulfur embrittlement on γ/γ′ interface of Ni-base single crystal superalloys. Acta Mater, 2003, 51(4): 1079 doi: 10.1016/S1359-6454(02)00512-8 [69] Zhang A J, Han J S, Su B, et al. A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy. Mater Sci Eng A, 2018, 731: 36 doi: 10.1016/j.msea.2018.06.030 [70] Opeka M M, Talmy I G, Wuchina E J, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc, 1999, 19(13-14): 2405 doi: 10.1016/S0955-2219(99)00129-6 [71] Zhang X H, Luo X G, Han J C, et al. Electronic structure, elasticity and hardness of diborides of zirconium and hafnium: First principles calculations. Comput Mater Sci, 2008, 44(2): 411 doi: 10.1016/j.commatsci.2008.04.002 [72] Fahrenholtz W G, Hilmas G E. Ultra-high temperature ceramics: materials for extreme environments. Scripta Mater, 2017, 129: 94 doi: 10.1016/j.scriptamat.2016.10.018 [73] Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun, 2015, 6: 8485 doi: 10.1038/ncomms9485 [74] Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun, 2018, 9(1): 980 doi: 10.1038/s41467-018-02982-x [75] Gild J, Zhang Y Y, Harrington T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep, 2016, 6: 37946 doi: 10.1038/srep37946 [76] Zhou J Y, Zhang J Y, Zhang F, et al. High-entropy carbide: A novel class of multicomponent ceramics. Ceram Int, 2018, 44(17): 22014 doi: 10.1016/j.ceramint.2018.08.100 [77] Castle E, Csanádi T, Grasso S, et al. Processing and properties of high-entropy ultra-high temperature carbides. Sci Rep, 2018, 8(1): 8609 doi: 10.1038/s41598-018-26827-1 [78] Yan X L, Constantin L, Lu Y F, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramics with low thermal conductivity. J Am Ceram Soc, 2018, 101(10): 4486 doi: 10.1111/jace.15779 [79] Gao X Y, Lu Y Z. Laser 3D printing of CoCrFeMnNi high-entropy alloy. Mater Lett, 2019, 236: 77 doi: 10.1016/j.matlet.2018.10.084 [80] Gordon T R, Schaak R E. Synthesis of hybrid Au-In2O3 nanoparticles exhibiting dual plasmonic resonance. Chem Mater, 2014, 26(20): 5900 doi: 10.1021/cm502396d [81] Shipway A N, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem, 2000, 1(1): 18 doi: 10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L [82] Lei Z F, Liu X J, Wang H, et al. Development of advanced materials via entropy engineering. Scripta Mater, 2019, 165: 164 doi: 10.1016/j.scriptamat.2019.02.015 -