• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结晶器旋转数值模拟及对高速钢电渣锭碳化物的影响

邓南阳 施晓芳 陈佳顺 常凯华 于雯春 王建军 常立忠

邓南阳, 施晓芳, 陈佳顺, 常凯华, 于雯春, 王建军, 常立忠. 结晶器旋转数值模拟及对高速钢电渣锭碳化物的影响[J]. 工程科学学报, 2020, 42(4): 516-526. doi: 10.13374/j.issn2095-9389.2019.07.07.001
引用本文: 邓南阳, 施晓芳, 陈佳顺, 常凯华, 于雯春, 王建军, 常立忠. 结晶器旋转数值模拟及对高速钢电渣锭碳化物的影响[J]. 工程科学学报, 2020, 42(4): 516-526. doi: 10.13374/j.issn2095-9389.2019.07.07.001
DENG Nan-yang, SHI Xiao-fang, CHEN Jia-shun, CHANG Kai-hua, YU Wen-chun, WANG Jian-jun, CHANG Li-zhong. Numerical simulation of mold rotation and its effect on carbides in HSS ESR ingot[J]. Chinese Journal of Engineering, 2020, 42(4): 516-526. doi: 10.13374/j.issn2095-9389.2019.07.07.001
Citation: DENG Nan-yang, SHI Xiao-fang, CHEN Jia-shun, CHANG Kai-hua, YU Wen-chun, WANG Jian-jun, CHANG Li-zhong. Numerical simulation of mold rotation and its effect on carbides in HSS ESR ingot[J]. Chinese Journal of Engineering, 2020, 42(4): 516-526. doi: 10.13374/j.issn2095-9389.2019.07.07.001

结晶器旋转数值模拟及对高速钢电渣锭碳化物的影响

doi: 10.13374/j.issn2095-9389.2019.07.07.001
基金项目: 国家自然科学基金资助项目(51574001,51774003);钢铁冶金新技术国家重点实验室开放基金资助项目(KF19-05);安徽省高校优秀青年人才支持计划资助项目(gxyqZD2017034);安徽工业大学创新训练项目(201910360013)
详细信息
    通讯作者:

    E-mail:clz1997@163.com

  • 中图分类号: TF744

Numerical simulation of mold rotation and its effect on carbides in HSS ESR ingot

More Information
  • 摘要: 为了改善M2高速钢中的碳化物分布,通过数值模拟详细分析了结晶器旋转对M2高速钢电渣重熔过程温度场、金属熔池形状的影响,并进一步通过实验室双极串联结晶器旋转电渣炉研究了旋转速率对M2高速钢电渣重熔过程的影响。采用扫描电镜观察并分析了结晶器旋转对电渣锭中碳化物形貌、分布的影响;采用小样电解萃取实验,分析了结晶器旋转速率对碳化物组成的影响。结果发现,随着结晶器旋转速率的增加,渣池的高温区从芯部向边部迁移,温度分布更加均匀;金属熔池的深度变浅,两相区的宽度收窄,从而导致局部凝固时间降低、二次枝晶间距减小。与此相对应,随着结晶器旋转速率的增加,M2电渣锭的渣皮更薄、更加均匀,结晶器对电渣锭的冷却强度更大,碳化物网格开始破碎、变薄,碳化物由片状改变为细小的棒状。X射线衍射分析表明,不论结晶器是否旋转,碳化物的类型始终不变,由M2C、MC和M6C组成,但是随旋转速率增加M2C含量增加,MC和M6C含量降低。碳化物组织得以改善的主要原因在于,结晶器旋转导致金属熔池深度降低、两相区宽度收窄,改善了凝固条件,减轻了元素偏析。
  • 图  1  不同转速下渣池的焦耳热分布

    Figure  1.  Joule heat distribution of slag pool with different mold-rotation speeds

    图  2  渣池表面的流场和温度场随结晶器旋转的变化

    Figure  2.  Variations of the flow and temperature fields on the slag pool surface with different mold-rotation speeds

    图  3  渣−金界面处的流场和温度场随结晶器旋转的变化

    Figure  3.  Variations of the flow and temperature fields on the slag/metal−pool interface with different mold-rotation speeds

    图  4  不同结晶器转速下电渣锭/渣池的纵向温度场分布

    Figure  4.  Longitudinal temperature distribution of the ESR ingot and slag pool with different mold-rotation speeds

    图  5  不同转速下液相线与固相线的位置. (a) 液相线; (b) 固相线

    Figure  5.  Locations of liquidus and solidus phases with different mold-rotation speeds: (a) liquidus temperature; (b) solidus temperature

    图  6  试样切取示意图(单位:mm)

    Figure  6.  Schematic of sample cutting (unit: mm)

    图  7  结晶器旋转速度与渣皮厚度关系

    Figure  7.  Relationship between mold-rotation speed and slag-skin thickness

    图  8  渣皮形成过程

    Figure  8.  Formation of slag skin during the ESR process

    图  9  不同结晶器转速对网状碳化物的影响

    Figure  9.  Effect of different mold-rotation speeds on the carbide network

    图  10  不同结晶器转速下碳化物的三维形貌

    Figure  10.  Three-dimensional morphology of the carbides under different mold-rotation speeds

    图  11  结晶器转速为0与9 r·min−1时高速钢萃取碳化物粉末的X射线衍射图

    Figure  11.  XRD pattern of carbide powder obtained from high-speed steel at the mold-rotation speed 0 and 9 r·min−1

    图  12  结晶器转速对碳化物组成的影响

    Figure  12.  Effect of mold-rotation speed on carbide composition

    图  13  电渣重熔过程金属熔池的界面形状

    Figure  13.  Interface shape of metal pool during ESR

    图  14  碳化物生长示意图. (a)$\omega $=0;(b)$\omega $>0

    Figure  14.  Schematic of carbide growth: (a) $\omega $=0; (b) $\omega $>0

    表  1  计算所需相关参数

    Table  1.   Relevant parameters required for calculation

    ParametersValue
    Thickness of slag pool/mm40
    Electrode diameter/mm28
    Electrode gap/mm20
    Electrode insertion depth/mm15
    Mold diameter/mm96
    Voltage/V34
    Mold-rotation speed / (r·min−1)0, 6, 13, 19
    下载: 导出CSV
  • [1] Luan Y K, Song N N, Bai Y L, et al. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls. J Mater Process Technol, 2010, 210(3): 536 doi: 10.1016/j.jmatprotec.2009.10.017
    [2] Ji Y L, Zhang W, Chen X Y, et al. Increasing solidification rate of M2 high-speed steel ingot by fusible metal mold. Acta Metall Sin (English Lett), 2016, 29(4): 382 doi: 10.1007/s40195-016-0398-x
    [3] 李正邦. 电渣冶金的理论与实践. 北京: 冶金工业出版社, 2010

    Li Z B. Electroslag Metallurgy Theory and Practice. Beijing: Metallurgical Industry Press, 2010
    [4] 贺宝, 李晶, 史成斌, 等. 电渣重熔过程冷却强度对含镁H13钢中碳化物的影响. 工程科学学报, 2016, 38(12):1720

    He B, Li J, Shi C B, et al. Effect of cooling intensity on carbides in Mg-containing H13 steel during the electroslag remelting process. Chin J Eng, 2016, 38(12): 1720
    [5] Hellman P. High-speed steels by powder metallurgy. Scand J Metall, 1998, 27(1): 44
    [6] Zhong H L, Fang Y, Kuang C, et al. Development of powder metallurgy high speed steel. Maters Sci Forum, 2010, 638-642: 1854 doi: 10.4028/www.scientific.net/MSF.638-642.1854
    [7] Li J, Li J, Shi C B, et al. Effect of trace magnesium on carbide improvement in H13 steel. Can Metall Q, 2016, 55(3): 321 doi: 10.1179/1879139515Y.0000000030
    [8] Zhou X F, Fang F, Tu Y Y, et al. Carbide refinement in M42 high speed steel by rare earth metals and spheroidizing treatment. J Southeast Univ English Ed, 2014, 30(4): 445
    [9] Wang M J, Chen L, Wang Z X, et al. Influence of rare earth elements on solidification behavior of a high speed steel for roll using differential scanning calorimetry. J Rare Earths, 2011, 29(11): 1089 doi: 10.1016/S1002-0721(10)60604-7
    [10] Chang L Z, Shi X F, Cong J Q, et al. Effects of relative motion between consumable electrodes and mould on solidification structure of electroslag ingots during electroslag remelting process. Ironmaking Steelmaking, 2014, 41(8): 611 doi: 10.1179/1743281213Y.0000000177
    [11] Chang L Z, Shi X F, Wang R X, et al. Effect of mold rotation on inclusion distribution in bearing steel during electroslag remelting process. China Foundry, 2014, 11(5): 452
    [12] 葛蓓蕾. 电渣重熔过程中渣成分变化对电渣冶金过程影响的数值模拟[学位论文]. 西安: 西安建筑科技大学, 2016

    Ge B L. Numerical Simulation of Slag Composition Change Influence on ESR Process[Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2016
    [13] 李宝宽, 王强. 基于数值模拟的电渣重熔理论与技术. 北京: 科学出版社, 2016

    Li B K, Wang Q. Theory and Technology of Electroslag Remelting Based on Numerical Simulation. Beijing: Science Press, 2016
    [14] 王芳, 李宝宽. 双级串联电渣重熔系统电磁场和焦耳热场研究. 东北大学学报(自然科学版), 2011, 32(4):533

    Wang F, Li B K. Electromagnetic field and Joule heating of an electroslag remelting process with two series-connected electrodes. J Northeast Univ Nat Sci, 2011, 32(4): 533
    [15] Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel. J Iron Steel Res Int, 2017, 24(1): 43 doi: 10.1016/S1006-706X(17)30007-9
    [16] Zhou X F, Fang F, Jiang J Q, et al. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment. Mater Sci Technol, 2014, 30(1): 116 doi: 10.1179/1743284713Y.0000000338
    [17] 冯唯伟. 含氮与稀土M2高速钢碳化物特性研究[学位论文]. 秦皇岛: 燕山大学, 2013

    Feng W W. The Carbide Characteristics of M2 High Speed Steel Containing Nitrogen and Rare Earth[Dissertation]. Qinhuangdao: Yanshan University, 2013
    [18] 常立忠, 李正邦. 电渣重熔过程中金属凝固的控制方法. 炼钢, 2007, 23(4):56 doi: 10.3969/j.issn.1002-1043.2007.04.015

    Chang L Z, Li Z B. Method of controlling solidification quality in electroslag remelting process. Steelmaking, 2007, 23(4): 56 doi: 10.3969/j.issn.1002-1043.2007.04.015
    [19] 弗莱明斯 M C. 凝固过程. 关玉龙, 屠宝洪, 许诚信, 译. 北京: 冶金工业出版社, 1981

    Flemings M C. Solidification processing. Translated by Guan Y L, Tu B H, Xu C X. Beijing: Metallurgical Industry Press, 1981
    [20] 王启明, 成国光, 黄宇. M2高速钢大尺寸碳化物的形貌特征及析出机理. 钢铁, 2018, 53(1):65

    Wang Q M, Cheng G G, Huang Y. Morphology and precipitation mechanism of large carbides in M2 high speed steel. Iron Steel, 2018, 53(1): 65
    [21] 邓玉昆, 陈景榕, 王世章. 高速工具钢. 北京: 冶金工业出版社, 2002

    Deng Y R, Chen J R, Wang S Z. High Speed Tool Steel. Beijing: Metallurgical Industry Press, 2002
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  1039
  • HTML全文浏览量:  780
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-07
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回