-
摘要: 为了改善M2高速钢中的碳化物分布,通过数值模拟详细分析了结晶器旋转对M2高速钢电渣重熔过程温度场、金属熔池形状的影响,并进一步通过实验室双极串联结晶器旋转电渣炉研究了旋转速率对M2高速钢电渣重熔过程的影响。采用扫描电镜观察并分析了结晶器旋转对电渣锭中碳化物形貌、分布的影响;采用小样电解萃取实验,分析了结晶器旋转速率对碳化物组成的影响。结果发现,随着结晶器旋转速率的增加,渣池的高温区从芯部向边部迁移,温度分布更加均匀;金属熔池的深度变浅,两相区的宽度收窄,从而导致局部凝固时间降低、二次枝晶间距减小。与此相对应,随着结晶器旋转速率的增加,M2电渣锭的渣皮更薄、更加均匀,结晶器对电渣锭的冷却强度更大,碳化物网格开始破碎、变薄,碳化物由片状改变为细小的棒状。X射线衍射分析表明,不论结晶器是否旋转,碳化物的类型始终不变,由M2C、MC和M6C组成,但是随旋转速率增加M2C含量增加,MC和M6C含量降低。碳化物组织得以改善的主要原因在于,结晶器旋转导致金属熔池深度降低、两相区宽度收窄,改善了凝固条件,减轻了元素偏析。Abstract: High-speed steel contains a large amount of carbides, the shape and distribution of which have an important influence on its quality. To improve the distribution of carbides in M2 high-speed steel, the temperature field and the shape of the metal pool during the mold-rotation process were investigated in detail using a numerical simulation. Moreover, the effect of the mold-rotation speed on the electroslag remelting process was investigated using a rotating bifilar electroslag remelting furnace under laboratory conditions. The morphology and distribution of carbides in an ESR ingot were observed using an SEM, and the composition of carbides was analyzed through an electrolytic extraction experiment. Results show that with increase in mold rotation speed, the high-temperature zone of the slag pool moves from the core to the edge. Moreover, the temperature distribution becomes uniform. The depth of the metal pool becomes shallow, and the thickness of the two-phase region decreases, which results in a short local solidification time and small secondary dendrite spacing. Correspondingly, with the increase in the mold rotation speed, the slag skin of ESR ingot becomes thin and more uniform than earlier. The cooling intensity of the mold on the ESR ingot is high, and the carbide network begins to break and become thin. The morphology of carbides changes from flake to fine rod. XRD analysis determines whether the mold rotates or not, carbides always comprise M2C, MC, and M6C. However, the content of M2C increases and the contents of MC and M6C decrease with the increase in mold-rotation speed. The main reason for the improvement in the carbide structure is that the mold rotation decreases the metal pool depth and two-phase zone thickness, which improves the solidification conditions and reduces the element segregation.
-
Key words:
- electroslag remelting /
- high speed steel /
- carbide /
- mold /
- numerical simulation
-
表 1 计算所需相关参数
Table 1. Relevant parameters required for calculation
Parameters Value Thickness of slag pool/mm 40 Electrode diameter/mm 28 Electrode gap/mm 20 Electrode insertion depth/mm 15 Mold diameter/mm 96 Voltage/V 34 Mold-rotation speed / (r·min−1) 0, 6, 13, 19 -
[1] Luan Y K, Song N N, Bai Y L, et al. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls. J Mater Process Technol, 2010, 210(3): 536 doi: 10.1016/j.jmatprotec.2009.10.017 [2] Ji Y L, Zhang W, Chen X Y, et al. Increasing solidification rate of M2 high-speed steel ingot by fusible metal mold. Acta Metall Sin (English Lett) , 2016, 29(4): 382 doi: 10.1007/s40195-016-0398-x [3] 李正邦. 电渣冶金的理论与实践. 北京: 冶金工业出版社, 2010Li Z B. Electroslag Metallurgy Theory and Practice. Beijing: Metallurgical Industry Press, 2010 [4] 贺宝, 李晶, 史成斌, 等. 电渣重熔过程冷却强度对含镁H13钢中碳化物的影响. 工程科学学报, 2016, 38(12):1720He B, Li J, Shi C B, et al. Effect of cooling intensity on carbides in Mg-containing H13 steel during the electroslag remelting process. Chin J Eng, 2016, 38(12): 1720 [5] Hellman P. High-speed steels by powder metallurgy. Scand J Metall, 1998, 27(1): 44 [6] Zhong H L, Fang Y, Kuang C, et al. Development of powder metallurgy high speed steel. Maters Sci Forum, 2010, 638-642: 1854 doi: 10.4028/www.scientific.net/MSF.638-642.1854 [7] Li J, Li J, Shi C B, et al. Effect of trace magnesium on carbide improvement in H13 steel. Can Metall Q, 2016, 55(3): 321 doi: 10.1179/1879139515Y.0000000030 [8] Zhou X F, Fang F, Tu Y Y, et al. Carbide refinement in M42 high speed steel by rare earth metals and spheroidizing treatment. J Southeast Univ English Ed, 2014, 30(4): 445 [9] Wang M J, Chen L, Wang Z X, et al. Influence of rare earth elements on solidification behavior of a high speed steel for roll using differential scanning calorimetry. J Rare Earths, 2011, 29(11): 1089 doi: 10.1016/S1002-0721(10)60604-7 [10] Chang L Z, Shi X F, Cong J Q, et al. Effects of relative motion between consumable electrodes and mould on solidification structure of electroslag ingots during electroslag remelting process. Ironmaking Steelmaking, 2014, 41(8): 611 doi: 10.1179/1743281213Y.0000000177 [11] Chang L Z, Shi X F, Wang R X, et al. Effect of mold rotation on inclusion distribution in bearing steel during electroslag remelting process. China Foundry, 2014, 11(5): 452 [12] 葛蓓蕾. 电渣重熔过程中渣成分变化对电渣冶金过程影响的数值模拟[学位论文]. 西安: 西安建筑科技大学, 2016Ge B L. Numerical Simulation of Slag Composition Change Influence on ESR Process[Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2016 [13] 李宝宽, 王强. 基于数值模拟的电渣重熔理论与技术. 北京: 科学出版社, 2016Li B K, Wang Q. Theory and Technology of Electroslag Remelting Based on Numerical Simulation. Beijing: Science Press, 2016 [14] 王芳, 李宝宽. 双级串联电渣重熔系统电磁场和焦耳热场研究. 东北大学学报(自然科学版), 2011, 32(4):533Wang F, Li B K. Electromagnetic field and Joule heating of an electroslag remelting process with two series-connected electrodes. J Northeast Univ Nat Sci, 2011, 32(4): 533 [15] Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel. J Iron Steel Res Int, 2017, 24(1): 43 doi: 10.1016/S1006-706X(17)30007-9 [16] Zhou X F, Fang F, Jiang J Q, et al. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment. Mater Sci Technol, 2014, 30(1): 116 doi: 10.1179/1743284713Y.0000000338 [17] 冯唯伟. 含氮与稀土M2高速钢碳化物特性研究[学位论文]. 秦皇岛: 燕山大学, 2013Feng W W. The Carbide Characteristics of M2 High Speed Steel Containing Nitrogen and Rare Earth[Dissertation]. Qinhuangdao: Yanshan University, 2013 [18] 常立忠, 李正邦. 电渣重熔过程中金属凝固的控制方法. 炼钢, 2007, 23(4):56 doi: 10.3969/j.issn.1002-1043.2007.04.015Chang L Z, Li Z B. Method of controlling solidification quality in electroslag remelting process. Steelmaking, 2007, 23(4): 56 doi: 10.3969/j.issn.1002-1043.2007.04.015 [19] 弗莱明斯 M C. 凝固过程. 关玉龙, 屠宝洪, 许诚信, 译. 北京: 冶金工业出版社, 1981Flemings M C. Solidification processing. Translated by Guan Y L, Tu B H, Xu C X. Beijing: Metallurgical Industry Press, 1981 [20] 王启明, 成国光, 黄宇. M2高速钢大尺寸碳化物的形貌特征及析出机理. 钢铁, 2018, 53(1):65Wang Q M, Cheng G G, Huang Y. Morphology and precipitation mechanism of large carbides in M2 high speed steel. Iron Steel, 2018, 53(1): 65 [21] 邓玉昆, 陈景榕, 王世章. 高速工具钢. 北京: 冶金工业出版社, 2002Deng Y R, Chen J R, Wang S Z. High Speed Tool Steel. Beijing: Metallurgical Industry Press, 2002 -