• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高剂量氦离子辐照对新型中子增殖铍钨合金表面结构的影响

刘平平 胡文 宋健 贾玉梅 詹倩 万发荣

刘平平, 胡文, 宋健, 贾玉梅, 詹倩, 万发荣. 高剂量氦离子辐照对新型中子增殖铍钨合金表面结构的影响[J]. 工程科学学报, 2020, 42(1): 128-133. doi: 10.13374/j.issn2095-9389.2019.07.08.008
引用本文: 刘平平, 胡文, 宋健, 贾玉梅, 詹倩, 万发荣. 高剂量氦离子辐照对新型中子增殖铍钨合金表面结构的影响[J]. 工程科学学报, 2020, 42(1): 128-133. doi: 10.13374/j.issn2095-9389.2019.07.08.008
LIU Ping-ping, HU Wen, SONG Jian, JIA Yu-mei, ZHAN Qian, WAN Fa-rong. Effect of high dose helium ion irradiation on the surface microstructure of a new neutron multiplying Be−W alloy[J]. Chinese Journal of Engineering, 2020, 42(1): 128-133. doi: 10.13374/j.issn2095-9389.2019.07.08.008
Citation: LIU Ping-ping, HU Wen, SONG Jian, JIA Yu-mei, ZHAN Qian, WAN Fa-rong. Effect of high dose helium ion irradiation on the surface microstructure of a new neutron multiplying Be−W alloy[J]. Chinese Journal of Engineering, 2020, 42(1): 128-133. doi: 10.13374/j.issn2095-9389.2019.07.08.008

高剂量氦离子辐照对新型中子增殖铍钨合金表面结构的影响

doi: 10.13374/j.issn2095-9389.2019.07.08.008
基金项目: 国家自然科学基金资助项目(U1637210,11775018,51601012)
详细信息
    通讯作者:

    E-mail:ppliu@ustb.edu.cn

  • 中图分类号: TG146.4;O469

Effect of high dose helium ion irradiation on the surface microstructure of a new neutron multiplying Be−W alloy

More Information
  • 摘要: 为了确保未来核聚变反应堆的氘氚自持燃烧必需采用中子增殖材料来得到合适的氚增值比。金属铍被认为是最有前途的核聚变反应堆固态中子倍增材料,但其熔点低,高温抗辐照肿胀性能差,因此需要寻找和研发具有更高熔点和更耐辐照肿胀的新型中子增殖材料以满足更先进的聚变堆要求。本研究尝试提出并制备了一种更高熔点的铍钨合金(Be12W),通过X射线和扫描电子显微镜对它的相组成和表面结构进行分析。对新型铍钨合金进行高剂量的氦离子辐照,发现合金表面一次起泡的平均尺寸约为0.8 μm,面密度约为2.4×107 cm−2,而二次起泡的平均尺寸约为80 nm,面密度约为1.28×108 cm−2。分析氦辐照引起的表面起泡及其机制,并与纯铍和铍钛合金表面起泡的情况进行了对比。
  • 图  1  铍钨合金相图以及Be12W的结构示意图

    Figure  1.  Phase diagram of Be‒W binary alloy and structure schematic of Be12W

    图  2  SRIM计算的氦离子在铍钨合金中的分布

    Figure  2.  Content profile of helium in the Be‒W alloy calculated by SRIM

    图  3  铍钨合金表面结构(a)及局部放大图(b)

    Figure  3.  Surface structure of Be‒W alloy (a) and partial enlarged morphology (b)

    图  4  铍钨合金的相组成

    Figure  4.  Phase composition of Be‒W alloy

    图  5  氦离子辐照后铍钨合金的表面结构.(a)二次起泡;(b)部分一次起泡破裂

    Figure  5.  Surface structure of helium ion irradiated Be‒W alloy (a) and broken of the first blister (b)

    图  6  氦离子辐照下材料表面起泡示意图

    Figure  6.  Schematic diagram of materials surface blistering under helium ion irradiation

    图  7  氦离子辐照后铍钨合金的表面起泡。(a)表面起泡尺寸分布;(b)表面2次起泡尺寸分布

    Figure  7.  Surface blister of helium ion irradiated Be‒W alloy: (a) size distribution of blister on Be‒W alloy surface; (b) size distribution of secondary blister on the surface

  • [1] Freidberg Jeffrey. 等离子体物理与聚变能. 北京: 科学出版社, 2010

    Freidberg J. Plasma Physics and Fusion Energy. Beijing: Science Press, 2010
    [2] 王乃彦. 聚变能及其未来. 北京: 清华大学出版社, 2001

    Wang N Y. Fusion Energy and Its Future. Beijing: Tsinghua University Press, 2001
    [3] Rebut P H. ITER: the first experimental fusion reactor. Fusion Eng Des, 1995, 30(1-2): 85 doi: 10.1016/0920-3796(94)00403-T
    [4] Barabash V, Peacock A, Fabritsiev S, et al. Materials challenges for ITER–current status and future activities. J Nucl Mater, 2007, 367-370: 21 doi: 10.1016/j.jnucmat.2007.03.017
    [5] 郝嘉琨. 聚变堆材料. 北京: 化学工业出版社, 2007

    Hao J K. Fusion Reactor Materials. Beijing: Chemical Industry Press, 2007
    [6] 郁金南. 材料辐照效应. 北京: 化学工业出版社, 2007

    Yu J N. Irradiation Effect of Materials. Beijing: Chemical Industry Press, 2007
    [7] 万发荣. 金属材料的辐照损伤. 北京: 科学出版社, 1993

    Wan F R. Irradiation Damage of Metal Materials. Beijing: Science Press, 1993
    [8] Raffray A R, Akiba M, Chuyanov V, et al. Breeding blanket concepts for fusion and materials requirements. J Nucl Mater, 2002, 307-311: 21 doi: 10.1016/S0022-3115(02)01174-1
    [9] Vladimirov P, Bachurin D, Borodin V, et al. Current status of beryllium materials for fusion blanket applications. Fusion Sci Technol, 2014, 66(1): 28 doi: 10.13182/FST13-776
    [10] Giancarli L M, Abdou M, Campbell D J, et al. Overview of the ITER TBM Program. Fusion Eng Des, 2012, 87(5-6): 395 doi: 10.1016/j.fusengdes.2011.11.005
    [11] Feng K M, Pan C H, Zhang G S, et al. Progress on design and R&D for helium-cooled ceramic breeder TBM in China. Fusion Eng Des, 2012, 87(7-8): 1138 doi: 10.1016/j.fusengdes.2012.02.098
    [12] Kawamura H, Takahashi H, Yoshida N, et al. Application of beryllium intermetallic compounds to neutron multiplier of fusion blanket. Fusion Eng Des, 2002, 61-62: 391 doi: 10.1016/S0920-3796(02)00106-0
    [13] Kurinskiy P, Moeslang A, Chakin V, et al. Characteristics of microstructure, swelling and mechanical behaviour of titanium beryllide samples after high-dose neutron irradiation at 740 and 873 K. Fusion Eng Des, 2013, 88(9-10): 2198 doi: 10.1016/j.fusengdes.2013.05.084
    [14] Nakamichi M, Kim J H. Homogenization treatment to stabilize the compositional structure of beryllide pebbles. J Nucl Mater, 2013, 440(1-3): 530 doi: 10.1016/j.jnucmat.2013.02.070
    [15] Nakamichi M, Kim J H. Fabrication and hydrogen generation reaction with water vapor of prototypic pebbles of binary beryllides as advanced neutron multiplier. Fusion Eng Des, 2015, 98-99: 1838 doi: 10.1016/j.fusengdes.2015.04.026
    [16] Kim J H, Nakamichi M. Optimization of synthesis conditions for plasma-sintered beryllium–titanium intermetallic compounds. J Alloys Compd, 2013, 577: 90 doi: 10.1016/j.jallcom.2013.04.185
    [17] Nakamichi M, Kim J H, Munakata K, et al. Preliminary characterization of plasma-sintered beryllides as advanced neutron multipliers. J Nucl Mater, 2013, 442(1-3, Suppl 1): S465 doi: 10.1016/j.jnucmat.2012.11.011
    [18] Liu P P, Zhan Q, Fu Z Y, et al. Surface and internal microstructure damage of He–ion–irradiated CLAM steel studied by cross-sectional transmission electron microscopy. J Alloys Compd, 2015, 649: 859 doi: 10.1016/j.jallcom.2015.07.177
    [19] Zhang C H, Chen K Q, Wang Y S, et al. Formation of bubbles in helium implanted 316L stainless steel at temperatures between 25 and 550 °C. J Nucl Mater, 1997, 245(2-3): 210 doi: 10.1016/S0022-3115(97)00007-X
    [20] 张崇宏, 陈克勤, 王引书, 等. 2.5 MeV的He+离子辐照316L不锈钢中氦泡的形核与生长研究. 物理学报, 1997, 46(9):1774 doi: 10.3321/j.issn:1000-3290.1997.09.017

    Zhang C H, Chen K Q, Wang Y S, et al. The formation of helium bubbles in 316L stainless steel irradiated with 2.5 MeV He+ ions. Acta Phys Sin, 1997, 46(9): 1774 doi: 10.3321/j.issn:1000-3290.1997.09.017
    [21] Trinkaus H. Modeling of helium effects in metals: high temperature embrittlement. J Nucl Mater, 1985, 133: 105
    [22] Trinkaus H. On the modeling of the high-temperature embrittlement of metals containing helium. J Nucl Mater, 1983, 118(1): 39 doi: 10.1016/0022-3115(83)90177-0
    [23] Li X C, Liu Y N, Yu Y, et al. Helium defects interactions and mechanism of helium bubble growth in tungsten: a molecular dynamics simulation. J Nucl Mater, 2014, 451(1-3): 356 doi: 10.1016/j.jnucmat.2014.04.022
    [24] Trinkaus H, Singh B N. Helium accumulation in metals during irradiation: where do we stand? J Nucl Mater, 2003, 323(2-3): 229 doi: 10.1016/j.jnucmat.2003.09.001
    [25] Fu C C, Willaime F. Ab initio study of helium in α-Fe: dissolution, migration, and clustering with vacancies. Phys Rev B, 2005, 72(6): 064117 doi: 10.1103/PhysRevB.72.064117
    [26] Evans J H. An interbubble fracture mechanism of blister formation on helium-irradiated metals. J Nucl Mater, 1977, 68(2): 129 doi: 10.1016/0022-3115(77)90232-X
    [27] Gusev V M, Guseva M I, Martynenko Y V, et al. Helium blistering at high irradiation doses. J Nucl Mater, 1979, 85-86: 1101 doi: 10.1016/0022-3115(79)90407-0
    [28] Liu Y Z, Li B S, Zhang L. High-temperature annealing induced He bubble evolution in low energy He ion implanted 6H–SiC. Chin Phys Lett, 2017, 34(5): 052801 doi: 10.1088/0256-307X/34/5/052801
    [29] Daghbouj N, Li B S, Karlik M, et al. 6H–SiC blistering efficiency as a function of the hydrogen implantation fluence. Appl Surf Sci, 2019, 466: 141 doi: 10.1016/j.apsusc.2018.10.005
  • 加载中
图(7)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  366
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-08
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回