• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无烟煤制备高性能锂离子电池负极材料的研究

王晶晶 赵洪亮 胡韬 刘风琴

王晶晶, 赵洪亮, 胡韬, 刘风琴. 无烟煤制备高性能锂离子电池负极材料的研究[J]. 工程科学学报, 2020, 42(7): 884-893. doi: 10.13374/j.issn2095-9389.2019.07.11.005
引用本文: 王晶晶, 赵洪亮, 胡韬, 刘风琴. 无烟煤制备高性能锂离子电池负极材料的研究[J]. 工程科学学报, 2020, 42(7): 884-893. doi: 10.13374/j.issn2095-9389.2019.07.11.005
WANG Jing-jing, ZHAO Hong-liang, HU Tao, LIU Feng-qin. High-performance anode materials based on anthracite for lithium-ion battery applications[J]. Chinese Journal of Engineering, 2020, 42(7): 884-893. doi: 10.13374/j.issn2095-9389.2019.07.11.005
Citation: WANG Jing-jing, ZHAO Hong-liang, HU Tao, LIU Feng-qin. High-performance anode materials based on anthracite for lithium-ion battery applications[J]. Chinese Journal of Engineering, 2020, 42(7): 884-893. doi: 10.13374/j.issn2095-9389.2019.07.11.005

无烟煤制备高性能锂离子电池负极材料的研究

doi: 10.13374/j.issn2095-9389.2019.07.11.005
基金项目: 中国工程院院地合作资助项目(2019NXZD5)
详细信息
    通讯作者:

    E-mail:liufq@ustb.edu.cn

  • 中图分类号: TM912.9

High-performance anode materials based on anthracite for lithium-ion battery applications

More Information
  • 摘要: 以我国资源丰富的低成本优质无烟煤为原料,经过2800 ℃高温纯化、石墨化处理,制备出锂电池用负极材料,用相同手段处理商业化石墨的前体石油焦与石墨化无烟煤作对比。通过X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),拉曼光谱(Roman)和氮吸附−解吸等手段对无烟煤基负极材料进行微观结构的表征。采用恒流充放电(GCD),循环伏安(CV)表征其电化学性能。实验结果表明,无烟煤基石墨化负极材料的石墨化度可达95.44%,比表面积为1.1319 m2·g−1,石墨片层结构平整光滑。该石墨化无烟煤作为锂离子电池的负极材料首次库伦效率为87%,在0.1C的电流密度下具有345.3 mA·h·g−1的可逆容量,且在高倍率下该材料比石墨化石油焦材料显现出更好储锂性能,这归功于石墨化无烟煤较为规则高度有序的表面结构。在不同倍率循环后电流密度恢复到0.1C时容量基本无衰减,100圈循环后可逆容量保持率高达93.8%,基本与石墨化石油焦负极相当,拥有优异的循环稳定性。无烟煤基石墨在容量、倍率性能及循环稳定性上基本接近甚至超过石墨化石油焦。本研究表明,采用优质无烟煤作为原料生产锂离子电池负极材料具有潜在的研究价值和广阔的商业前景。
  • 图  1  无烟煤和石油焦及其石墨化后的微观形貌图。(a)无烟煤前体;(b,c,d)GA样品扫描电镜图;(e)石油焦前体;(f,g,h)GPC样品扫描电镜图

    Figure  1.  Microscopic topography of anthraciteand petroleum coke after graphitization: (a) anthracite precursor; (b, c, d) GA sample; (e) petroleum coke precursor; (f,g,h) scanning electron micrograph of GPC sample

    图  2  GA样品透射电镜图。(a,b)透射电镜;(c,d)高倍透射电镜

    Figure  2.  Transmission electron micrograph of GA sample: (a, b) TEM; (c, d) HRTEM

    图  3  无烟煤和GA样品的X射线衍射图

    Figure  3.  XRD pattern of anthracite and GA samples

    图  4  无烟煤和GA样品的拉曼光谱图

    Figure  4.  Raman spectra of anthracite and GA samples

    图  5  GA和GPC样品的吸附曲线及孔径分布情况。(a)GA的氮气吸附−解吸等温线;(b)GA的孔径分布曲线;(c)GPC的氮气吸附−解吸等温线;(d)GPC的孔径分布曲线

    Figure  5.  Adsorption curve and pore size distribution of GA and GPC sample: (a) nitrogen adsorption-desorption isotherm of GA; (b) pore size distribution curve of GA; (c) nitrogen adsorption-desorption isotherm of GPC; (d) pore size distribution curve of GPC

    图  6  GA和GPC不同倍率充放电曲线。(a)0.1C~1C倍率下GA的充放电曲线;(b)0.1C~1C倍率下GPC的充放电曲线

    Figure  6.  Charge and discharge curves of GA and GPC at different magnifications: (a) charge and discharge curves of GA at 0.1C–1C rate; (b) charge and discharge curves of GPC at 0.1C–1C rate

    图  7  GA和GPC的倍率曲线及循环伏安曲线。(a)0.1C~1C倍率下GA和GPC的倍率曲线;(b)GA的循环伏安扫描曲线

    Figure  7.  Magnification curve and cyclic voltammetry curve of GA and GPC: (a) magnification curve of GA and GPC at 0.1C–1C rate; (b) cyclic voltammetric curve of GA

    图  8  GA和GPC的循环性能和库伦效率

    Figure  8.  Cyclic performance and Coulombic efficiency of GA and GPC

    表  1  实验药品和试剂

    Table  1.   Experimental samples and reagents

    Reagent nameChemical formulaReagent gradeSupplier
    Polyvinylidene fluoride(PVDF)[−CH2−CF2−]Premium gradeCALB Co., Ltd.
    N-methylpyrrolidone(NMP)C5H9NOElectronic gradeShanghai Titan Technology Co., Ltd.
    ElectrolyteLiPF6Electronic gradeBAK Battery Co., Ltd.
    Acetylene carbon black(Super-P)CElectronic gradeMitsubishi Chemical Co., Ltd.
    下载: 导出CSV

    表  2  石墨化无烟煤灼烧数据

    Table  2.   Graphitized anthracite burning data

    NumberNet weight of crucible, m1/gSample quality, m2/gTotal mass after burning, m3/gAsh, (m3m1m2−1/%
    117.10981.513717.11400.277
    217.06901.555317.07320.270
    316.76451.041516.76740.278
    416.91991.051316.92290.275
    下载: 导出CSV

    表  3  GA和GPC的首次充放电容量和库伦效率

    Table  3.   First charge and discharge capacity and coulombic efficiency of GA and GPC

    Sample nameFirst discharge capacity/(mA·h·g−1)First charge capacity/(mA·h·g−1)Irreversible capacity/(mA·h·g−1)Coulombic efficiency/%
    GA415.4361.45487
    GPC395.8346.349.587.5
    下载: 导出CSV
  • [1] Griffiths G. Review of developments in lithium secondary battery technology. Underwater Technol, 2016, 33(3): 153 doi: 10.3723/ut.33.153
    [2] Mekonnen Y, Sundararajan A, Sarwat A I. A review of cathode and anode materials for lithium-ion batteries//SoutheastCon 2016. Norfolk, 2016: 1
    [3] Nitta N, Wu F X, Lee J T, et al. Li-ion battery materials: present and future. Mater Today, 2015, 18(5): 252 doi: 10.1016/j.mattod.2014.10.040
    [4] Mahmood N, Tang T Y, Hou Y L. Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater, 2016, 6(17): 1600374 doi: 10.1002/aenm.201600374
    [5] Kim Y J, Yang H, Yoon S H, et al. Anthracite as a candidate for lithium ion battery anode. J Power Sources, 2003, 113(1): 157 doi: 10.1016/S0378-7753(02)00528-1
    [6] Cameán I, Lavela P, Tirado J L, et al. On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel, 2010, 89(5): 986 doi: 10.1016/j.fuel.2009.06.034
    [7] Zhou X Y, Ma L L, Yang J, et al. Properties of graphitized boron-doped coal-based coke powders as anode for lithium-ion batteries. J Electroanal Chem, 2013, 698: 39 doi: 10.1016/j.jelechem.2013.03.019
    [8] Xing B L, Zhang C T, Cao Y J, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel Process Technol, 2018, 172: 162 doi: 10.1016/j.fuproc.2017.12.018
    [9] Xiao J, Li F C, Zhong Q F, et al. Effect of high-temperature pyrolysis on the structure and properties of coal and petroleum coke. J Anal Appl Pyrol, 2016, 117: 64 doi: 10.1016/j.jaap.2015.12.015
    [10] Liu X X, Luo J, Zhu Y T, et al. Removal of methylene blue from aqueous solutions by an adsorbent based on metal-organic framework and polyoxometalate. J Alloys Compd, 2015, 648: 986 doi: 10.1016/j.jallcom.2015.07.065
    [11] Tian B, Li P F, Li D W, et al. Preparation of micro-porous monolithic activated carbon from anthracite coal using coal tar pitch as binder. J Porous Mater, 2017, 25(4): 1
    [12] Wu X, Yang X L, Zhang F, et al. Carbon-coated isotropic natural graphite spheres as anode material for lithium-ion batteries. Ceram Int, 2017, 43(12): 9458 doi: 10.1016/j.ceramint.2017.04.123
    [13] Högström K C, Malmgren S, Hahlin M, et al. The buried carbon/solid electrolyte interphase in Li-ion batteries studied by hard X-ray photoelectron spectroscopy. Electrochim Acta, 2014, 138: 430 doi: 10.1016/j.electacta.2014.06.129
    [14] Ramos A, Cameán I, Cuesta N, et al. Graphitized stacked-cup carbon nanofibers as anode materials for lithium-ion batteries. Electrochim Acta, 2014, 146: 769 doi: 10.1016/j.electacta.2014.09.035
    [15] Tian M, Wang W, Liu Y, et al. A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy, 2015, 11: 500 doi: 10.1016/j.nanoen.2014.11.006
    [16] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta, 2010, 55(22): 6332 doi: 10.1016/j.electacta.2010.05.072
    [17] Jung K N, Pyun S I. Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept. Electrochim Acta, 2006, 51(13): 2646 doi: 10.1016/j.electacta.2005.08.008
    [18] Cameán I, Garcia A B. Graphite materials prepared by HTT of unburned carbon from coal combustion fly ashes: Performance as anodes in lithium-ion batteries. J Power Sources, 2011, 196(10): 4816 doi: 10.1016/j.jpowsour.2011.01.041
    [19] Wang C, Zhao H, Wang J, et al. Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries. Ionics, 2013, 19(2): 221
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  404
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-11
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回