• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子皮肤新型材料与性能研究进展

万甦伟 陈家林 李世鸿 李俊鹏

万甦伟, 陈家林, 李世鸿, 李俊鹏. 电子皮肤新型材料与性能研究进展[J]. 工程科学学报, 2020, 42(6): 704-714. doi: 10.13374/j.issn2095-9389.2019.07.18.001
引用本文: 万甦伟, 陈家林, 李世鸿, 李俊鹏. 电子皮肤新型材料与性能研究进展[J]. 工程科学学报, 2020, 42(6): 704-714. doi: 10.13374/j.issn2095-9389.2019.07.18.001
WAN Su-wei, CHEN Jia-lin, LI Shi-hong, LI Jun-peng. Research progress on new materials and properties of electronic skin[J]. Chinese Journal of Engineering, 2020, 42(6): 704-714. doi: 10.13374/j.issn2095-9389.2019.07.18.001
Citation: WAN Su-wei, CHEN Jia-lin, LI Shi-hong, LI Jun-peng. Research progress on new materials and properties of electronic skin[J]. Chinese Journal of Engineering, 2020, 42(6): 704-714. doi: 10.13374/j.issn2095-9389.2019.07.18.001

电子皮肤新型材料与性能研究进展

doi: 10.13374/j.issn2095-9389.2019.07.18.001
基金项目: 国家自然科学基金资助项目(51771084);云南省科技计划资助项目(2016DC032,2018ZE001)
详细信息
    通讯作者:

    E-mail:lijunpeng@ipm.com.cn

  • 中图分类号: TP212

Research progress on new materials and properties of electronic skin

More Information
  • 摘要: 电子皮肤作为一种柔性触觉仿生传感器已经广泛地应用于人体生理参数检测与机器人触觉感知等领域。基于金属和半导体材料的传统电子皮肤触觉传感器,由于柔韧性和可穿戴性差,已经难以满足实际使用中对拉伸性、便携性的要求。得益于柔性材料、制造工艺和传感技术的快速发展,近年来聚二甲基硅氧烷、碳纳米管、石墨烯等新材料被用于制备或支撑电子皮肤传感器,使电子皮肤在性能上更趋于人类皮肤。本文分析讨论了电子皮肤新材料以及应用于电子皮肤当中的传感技术,重点总结了近年来电子皮肤在可拉伸/压缩性、生物相容性、生物降解性、自供电性、自修复性、温度敏感性以及多功能集成等方面的研究进展,展望了未来电子皮肤新性能的研究方向以及实现大面积、低成本、多种功能集成电子皮肤传感器阵列的可能途径。
  • 图  1  传感方式原理图。(a)压阻效应;(b)电容效应;(c)压电效应[41]

    Figure  1.  Schematic images of transduction methods: (a) piezoresistivity; (b) capacitance; (c) piezoelectricity[41]

    图  2  生物降解传感器[15]

    Figure  2.  Biodegradation sensor[15]

    图  3  一种本质上可自愈的导电复合材料。(a)与LED灯串联的导电复合材料;(b)通过复合膜电阻测量的电自愈[16]

    Figure  3.  An intrinsically self-healing conductive composite: (a) an LED connected in series with the conductive composite; (b) electrical self-healing as measured through the resistance of the composite film[16]

    图  4  多功能表皮电子系统。(a)未变形;(b)压缩;(c)拉伸[66]

    Figure  4.  Multifunctional epidermal electronic system: (a) undeformed; (b) compressed; (c) stretched[66]

  • [1] Amjadi M, Kyung K U, Park I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater, 2016, 26(11): 1678 doi: 10.1002/adfm.201504755
    [2] Bae G Y, Pak S W, Kim D, et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater, 2016, 28(26): 5300 doi: 10.1002/adma.201600408
    [3] Trung T Q, Lee N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater, 2016, 28(22): 4338 doi: 10.1002/adma.201504244
    [4] Wang X D, Zhang H L, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv Mater, 2016, 28(15): 2896 doi: 10.1002/adma.201503407
    [5] Xu S, Zhang Y H, Jia L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 2014, 344(6179): 70 doi: 10.1126/science.1250169
    [6] Zhong W B, Liu Q Z, Wu Y Z, et al. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale, 2016, 8(24): 12105 doi: 10.1039/C6NR02678H
    [7] Hammock M L, Chortos A, Tee B C K, et al. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25(42): 5997 doi: 10.1002/adma.201302240
    [8] Wu Z C, Chen Z H, Du X, et al. Transparent, conductive carbon nanotube films. Science, 2004, 305(5688): 1273 doi: 10.1126/science.1101243
    [9] Opatkiewicz J P, LeMieux M C, Liu D, et al. Using nitrile functional groups to replace amines for solution-deposited single-walled carbon nanotube network films. ACS Nano, 2012, 6(6): 4845 doi: 10.1021/nn300124y
    [10] Small W R, in het Panhuis M. Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small, 2007, 3(9): 1500 doi: 10.1002/smll.200700110
    [11] Kang S J, Kocabas C, Ozel T, et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnol, 2007, 2: 230 doi: 10.1038/nnano.2007.77
    [12] Lipomi D J, Vosgueritchian M, Tee B C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnol, 2011, 6: 788 doi: 10.1038/nnano.2011.184
    [13] Lin D W, Bettinger C J, Ferreira J P, et al. A cell-compatible conductive film from a carbon nanotube network adsorbed on poly-L-lysine. ACS Nano, 2011, 5(12): 10026 doi: 10.1021/nn203870c
    [14] Wang K, Ruan J, Song H, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett, 2011, 6: art. No. 8 doi: 10.1007/s11671-010-9751-6
    [15] Bettinger C J, Bao Z N. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater, 2010, 22(5): 651 doi: 10.1002/adma.200902322
    [16] Tee B C K, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnol, 2012, 7: 825 doi: 10.1038/nnano.2012.192
    [17] Lipomi D J, Tee B C K, Vosgueritchian M, et al. Stretchable organic solar cells. Adv Mater, 2011, 23(15): 1771 doi: 10.1002/adma.201004426
    [18] Jeon J, Lee H B R, Bao Z N. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater, 2013, 25(6): 850 doi: 10.1002/adma.201204082
    [19] Kim H J, Sim K, Thukral A, et al. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci Adv, 2017, 3(9): art. No. e1701114
    [20] 金欣, 畅旭东, 王闻宇, 等. 基于聚二甲基硅氧烷柔性可穿戴传感器研究进展. 材料工程, 2018, 46(11):13 doi: 10.11868/j.issn.1001-4381.2018.000097

    Jin X, Chang X D, Wang W Y, et al. Research progress in flexible wearable strain sensors based on polydimethylsiloxane. J Mater Eng, 2018, 46(11): 13 doi: 10.11868/j.issn.1001-4381.2018.000097
    [21] 蔡依晨, 黄维, 董晓臣. 可穿戴式柔性电子应变传感器. 科学通报, 2017, 62(7):635 doi: 10.1360/N972015-01445

    Cai Y C, Huang W, Dong X C. Wearable and flexible electronic strain sensor. Chin Sci Bull, 2017, 62(7): 635 doi: 10.1360/N972015-01445
    [22] 何崟, 周艺颖, 刘皓, 等. 基于碳材料的柔性压力传感器研究进展. 化工进展, 2018, 37(7):2664

    He Y, Zhou Y Y, Liu H, et al. Research progress of flexible pressure sensors based on carbon materials. Chem Ind Eng Prog, 2018, 37(7): 2664
    [23] 罗实, 周熙, 杨俊, 等. 碳纳米材料在柔性压力传感器中的应用. 功能材料, 2018, 49(8):08048

    Luo S, Zhou X, Yang J, et al. The application of carbon nanomaterials in the flexible pressure sensor. J Funct Mater, 2018, 49(8): 08048
    [24] Clippinger F W, Avery R, Titus B R. A sensory feedback system for an upper-limb amputation prosthesis. Bull Pusthet Res, 1974: 247
    [25] Codd R D, Nightingale J M, Todd R W. An adaptive multi-functional hand prosthesis. J Physiology, 1973, 232(2): 55P
    [26] 张超然, 刘婉姬, 王立石, 等. 电子皮肤专利分析. 中国发明与专利, 2016(3):26 doi: 10.3969/j.issn.1672-6081.2016.03.006

    Zhang C R, Liu W J, Wang L S, et al. Electronic skin patent analysis. China Invent Patent, 2016(3): 26 doi: 10.3969/j.issn.1672-6081.2016.03.006
    [27] Schwartz G, Tee B C K, Mei J G, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Commun, 2013, 4: 1859 doi: 10.1038/ncomms2832
    [28] Moon J H, Baek D H, Choi Y Y, et al. Wearable polyimide–PDMS electrodes for intrabody communication. J Micromech Microeng, 2010, 20(2): 025032 doi: 10.1088/0960-1317/20/2/025032
    [29] Jung H C, Moon J H, Baek D H, et al. CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans Biomed Eng, 2012, 59(5): 1472 doi: 10.1109/TBME.2012.2190288
    [30] Chen C Y, Chang C L, Chien T F, et al. Flexible PDMS electrode for one-point wearable wireless bio-potential acquisition. Sens Actuators A, 2013, 203: 20 doi: 10.1016/j.sna.2013.08.010
    [31] Jung J M, Cha D Y, Kim D S, et al. Development of PDMS-based flexible dry type SEMG electrodes by micromachining technologies. Appl Phys A, 2014, 116(3): 1395 doi: 10.1007/s00339-014-8244-3
    [32] Graudejus O, Görrn P, Wagner S. Controlling the morphology of gold films on poly (dimethylsiloxane). ACS Appl Mater Interfaces, 2010, 2(7): 1927 doi: 10.1021/am1002537
    [33] Adrega T, Lacour S P. Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J Micromech Microeng, 2010, 20(5): art. No. 055025
    [34] Ryu S, Lee P, Chou J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano, 2015, 9(6): 5929 doi: 10.1021/acsnano.5b00599
    [35] Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnol, 2011, 6: 296 doi: 10.1038/nnano.2011.36
    [36] Liu N, Chortos A, Lei T, et al. Ultratransparent and stretchable graphene electrodes. Sci Adv, 2017, 3(9): e1700159 doi: 10.1126/sciadv.1700159
    [37] Boland C S, Khan U, Backes C, et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano, 2014, 8(9): 8819 doi: 10.1021/nn503454h
    [38] Wu W Z, Wen X N, Wang Z L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science, 2013, 340(6135): 952 doi: 10.1126/science.1234855
    [39] Sinha S K, Noh Y, Reljin N, et al. Screen-printed PEDOT: PSS electrodes on commercial finished textiles for electrocardiography. ACS Appl Mater Interfaces, 2017, 9(43): 37524 doi: 10.1021/acsami.7b09954
    [40] Hage-Ali S, Tiercelin N, Coquet P, et al. A millimeter-wave inflatable frequency-agile elastomeric antenna. IEEE Antennas Wirel Propag Lett, 2010, 9: 1131 doi: 10.1109/LAWP.2010.2096405
    [41] Zang Y P, Zhang F J, Di C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz, 2015, 2(2): 140 doi: 10.1039/C4MH00147H
    [42] Bae S H, Lee Y, Sharma B K, et al. Graphene-based transparent strain sensor. Carbon, 2013, 51: 236 doi: 10.1016/j.carbon.2012.08.048
    [43] Chou H H, Nguyen A, Chortos A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Commun, 2015, 6: 8011 doi: 10.1038/ncomms9011
    [44] Cai L, Song L, Luan P S, et al. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep, 2013, 3: 3048 doi: 10.1038/srep03048
    [45] Jeong J W, Kim M K, Cheng H, et al. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv Healthcare Mater, 2014, 3(5): 642 doi: 10.1002/adhm.201300334
    [46] Dargahi J, Najarian S. Human tactile perception as a standard for artificial tactile sensing—a review. Int J Med Rob Comput Assist Surg, 2004, 1(1): 23 doi: 10.1002/rcs.3
    [47] Sun Q J, Seung W, Kim B J, et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater, 2015, 27(22): 3411 doi: 10.1002/adma.201500582
    [48] Yun S, Park S, Park B, et al. Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv Mater, 2014, 26(26): 4474 doi: 10.1002/adma.201305850
    [49] Ramuz M, Tee B C K, Tok J B H, et al. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater, 2012, 24(24): 3223 doi: 10.1002/adma.201200523
    [50] Wagner S, Bauer S. Materials for stretchable electronics. MRS Bull, 2012, 37(3): 207 doi: 10.1557/mrs.2012.37
    [51] Yao S S, Zhu Y. Stretchable conductors: nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater, 2015, 27(9): 1479 doi: 10.1002/adma.201570061
    [52] Yan C Y, Lee P S. Stretchable energy storage and conversion devices. Small, 2014, 10(17): 3443 doi: 10.1002/smll.201302806
    [53] Lipomi D J, Bao Z N. Stretchable and ultraflexible organic electronics. MRS Bull, 2017, 42(2): 93 doi: 10.1557/mrs.2016.325
    [54] Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nature Commun, 2015, 6: 7461 doi: 10.1038/ncomms8461
    [55] Tybrandt K, Vörös J. Fast and efficient fabrication of intrinsically stretchable multilayer circuit boards by wax pattern assisted filtration. Small, 2016, 12(2): 180 doi: 10.1002/smll.201502849
    [56] Wang Y, Zhu C X, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv, 2017, 3(3): art. No. e1602076
    [57] Kim H, Ahn J H. Graphene for flexible and wearable device applications. Carbon, 2017, 120: 244 doi: 10.1016/j.carbon.2017.05.041
    [58] Wang S H, Xu J, Wang W C, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555(7694): 83 doi: 10.1038/nature25494
    [59] Poland C A, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnol, 2008, 3: 423 doi: 10.1038/nnano.2008.111
    [60] Pantarotto D, Briand J P, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun, 2004(1): 16 doi: 10.1039/b311254c
    [61] Boutry C M, Kaizawa Y, Schroeder B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electron, 2018, 1: 314 doi: 10.1038/s41928-018-0071-7
    [62] Chen G, Matsuhisa N, Liu Z Y, et al. Plasticizing silk protein for on-skin stretchable electrodes. Adv Mater, 2018, 30(21): art. No. e1800129
    [63] Kim S H, Seo H, Kang J, et al. An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways. ACS Nano, 2019, 13(6): 6531 doi: 10.1021/acsnano.9b00160
    [64] Lipomi D J, Chong H, Vosgueritchian M, et al. Toward mechanically robust and intrinsically stretchable organic solar cells: evolution of photovoltaic properties with tensile strain. Sol Energy Mater Sol Cells, 2012, 107: 355 doi: 10.1016/j.solmat.2012.07.013
    [65] Han S, Kim J, Won S M, et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci Transl Med, 2018, 10(435): art. No. eaan4950
    [66] Kim D H, Lu N S, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044): 838 doi: 10.1126/science.1206157
    [67] Hua Q L, Sun J L, Liu H T, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Commun, 2018, 9: 244 doi: 10.1038/s41467-017-02685-9
    [68] Molina-Lopez F, Gao T Z, Kraft U, et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nature Commun, 2019, 10: 2676 doi: 10.1038/s41467-019-10569-3
  • 加载中
图(4)
计量
  • 文章访问数:  788
  • HTML全文浏览量:  628
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回