• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RH精炼过程中吹氧量对IF钢洁净度的影响

潘明 于会香 季晨曦 刘延强 冀云卿

潘明, 于会香, 季晨曦, 刘延强, 冀云卿. RH精炼过程中吹氧量对IF钢洁净度的影响[J]. 工程科学学报, 2020, 42(7): 846-853. doi: 10.13374/j.issn2095-9389.2019.07.19.002
引用本文: 潘明, 于会香, 季晨曦, 刘延强, 冀云卿. RH精炼过程中吹氧量对IF钢洁净度的影响[J]. 工程科学学报, 2020, 42(7): 846-853. doi: 10.13374/j.issn2095-9389.2019.07.19.002
PAN Ming, YU Hui-xiang, JI Chen-xi, LIU Yan-qiang, JI Yun-qing. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel[J]. Chinese Journal of Engineering, 2020, 42(7): 846-853. doi: 10.13374/j.issn2095-9389.2019.07.19.002
Citation: PAN Ming, YU Hui-xiang, JI Chen-xi, LIU Yan-qiang, JI Yun-qing. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel[J]. Chinese Journal of Engineering, 2020, 42(7): 846-853. doi: 10.13374/j.issn2095-9389.2019.07.19.002

RH精炼过程中吹氧量对IF钢洁净度的影响

doi: 10.13374/j.issn2095-9389.2019.07.19.002
基金项目: 国家重点研发计划资助项目(2017YFB0304000, 2017YFB0304001)
详细信息
    通讯作者:

    E-mail: yuhuixiang@ustb.edu.cn

  • 中图分类号: TF769.9

Effect of oxygen blowing during RH treatment on the cleanliness of IF steel

More Information
  • 摘要: 无间隙原子钢(IF钢)主要用于汽车、家电等行业,除需要极低的C、N含量外,对最终产品的表面质量也有严格要求。钢中O含量和夹杂物对产品的表面质量影响很大。快速降低钢中C含量、同时保证钢的高洁净度是非常重要的。为此,通过在Ruhrstahl Hereaeus(RH)精炼−连铸过程密集取样,采用ASPEX扫描电镜详细研究了RH吹氧强制脱碳工艺下吹氧量对IF钢洁净度的影响。结果表明,本实验条件下,吹氧量对精炼−连铸过程中夹杂物的类型和形貌没有影响。吹氧量对RH精炼前期(加Al后4 min内)钢液洁净度影响较大,而对后期生产过程中钢液的洁净度影响不大;精炼前期,吹氧量高,钢液中总氧(T.O)含量和夹杂物的量增加。簇群状夹杂物主要出现在RH破空之前,真空精炼结束后钢液中很难发现簇群状夹杂物。中间包钢液洁净度与RH吹氧量相关性不大,而与加Al脱氧前钢液中O含量相关性很大,加Al脱氧前钢液中O含量高,中间包钢液洁净度差;为提高中间包钢液的洁净度,应尽量减少加Al脱氧前钢液中的O含量。随着生产的进行,钢液中T.O含量、夹杂物的量呈下降趋势,洁净度逐渐提高。
  • 图  1  取样明细

    Figure  1.  Sampling during process

    图  2  试样加工图。(a)取样器试样;(b)铸坯试样

    Figure  2.  Schematic of sample machining: (a) sample by sampler; (b) sample from slab

    图  3  Al2O3夹杂物典型形貌。(a)树枝类簇群;(b)珊瑚状簇群;(c)棒状;(d)球形;(e)块状

    Figure  3.  Morphology of typical Al2O3 inclusions: (a) dendritic cluster; (b) coral cluster; (c) bar-like; (d) spherical; (e) bulk

    图  4  Al‒Ti‒O复合夹杂物典型形貌及面扫。(a)类球状;(b)不规则状

    Figure  4.  Morphology of typical Al‒Ti‒O complex inclusions and surface scanning: (a) spherical; (b) irregular shape

    图  5  不同RH吹氧量下钢中夹杂物的尺寸分布。(a)35 m3;(b)160 m3;(c)295 m3

    Figure  5.  Size distribution of inclusions in different oxygen blowing in RH: (a) 35 m3; (b) 160 m3; (c) 295 m3

    图  6  不同RH吹氧量下T.O含量变化

    Figure  6.  Change in the content of T.O in different oxygen blowing in RH

    图  7  不同RH吹氧量下N含量变化

    Figure  7.  Change in the content of N in different oxygen blowing in RH

    图  8  不同RH吹氧量下夹杂物数量密度变化

    Figure  8.  Change in the density of inclusions in different oxygen blowing in RH

    图  9  不同RH吹氧量下夹杂物面积比变化

    Figure  9.  Change in the area ratio of inclusions in different oxygen blowing in RH

    图  10  钢包不同深度夹杂物上浮时间

    Figure  10.  Removal time of inclusions in different depths of ladle

    图  11  不同RH吹氧量与簇群状夹杂物面积比关系

    Figure  11.  Relation between different oxygen blowing in RH and area ratio of cluster inclusions

    图  12  中包内夹杂物面积比与RH吹氧量关系

    Figure  12.  Relation between area ratio of inclusions in the tundish and the amount of oxygen blowing

    图  13  中包内夹杂物面积比与加Al脱氧前钢液中氧含量关系

    Figure  13.  Relation between area ratio of inclusions in the tundish and the content of oxygen in molten steel before Al deoxygenation

    表  1  RH吹氧情况

    Table  1.   Oxygen blowing during RH treatment

    Heat numberOxygen blowing/m3Decarburization/
    %
    Oxygen content before deoxidation/%
    1350.01850.0365
    22150.03020.0362
    32200.02620.0350
    42350.02520.0310
    52950.04180.0291
    61600.03410.0388
    下载: 导出CSV
  • [1] 王新华. 高品质冷轧薄板钢中非金属夹杂物控制技术. 钢铁, 2013, 48(9):1

    Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1
    [2] Matsuura H, Wang C, Wen G H, et al. The transient stages of inclusion evolution during Al and/or Ti additions to molten iron. ISIJ Int, 2007, 47(9): 1265 doi: 10.2355/isijinternational.47.1265
    [3] Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel. ISIJ Int, 2004, 44(10): 1653 doi: 10.2355/isijinternational.44.1653
    [4] 王敏, 包燕平, 杨荃. 钛合金化过程对钢液洁净度的影响. 北京科技大学学报, 2013, 35(6):725

    Wang M, Bao Y P, Yang Q. Effect of ferro-titanium alloying process on steel cleanness. J Univ Sci Technol Beijing, 2013, 35(6): 725
    [5] Qin Y M, Wang X H, Li L P, et al. Effect of oxidizing slag on cleanliness of IF steel during ladle holding process. Steel Res Int, 2015, 86(9): 1037 doi: 10.1002/srin.201400349
    [6] 崔衡, 陈斌, 王敏, 等. RH精炼过程中IF钢洁净度控制. 北京科技大学学报, 2011, 33(增刊1): 147

    Cui H, Chen B, Wang M, et al. Cleanliness control of IF steel during the RH refining process. J Univ Sci Technol Beijing, 2011, 33(Suppl1): 147
    [7] 王敏, 包燕平, 崔衡, 等. RH纯循环对Ti-IF钢洁净度的影响. 北京科技大学学报, 2011, 33(12):1448

    Wang M, Bao Y P, Cui H, et al. Effect of RH pure circulation on the cleanness of titanium stabilized interstitial-free (Ti-IF) steel. J Univ Sci Technol Beijing, 2011, 33(12): 1448
    [8] 袁方明, 王新华, 李宏, 等. 不同浇铸阶段IF钢连铸板坯洁净度. 北京科技大学学报, 2005, 27(4):436 doi: 10.3321/j.issn:1001-053X.2005.04.012

    Yuan F M, Wang X H, Li H, et al. Cleanliness of interstitial-free steel slabs produced in different casting stages. J Univ Sci Technol Beijing, 2005, 27(4): 436 doi: 10.3321/j.issn:1001-053X.2005.04.012
    [9] 崔衡, 岳峰, 包燕平, 等. IF钢连铸头坯洁净度研究. 钢铁, 2010, 45(3):38

    Cui H, Yue F, Bao Y P, et al. Study on cleanliness of IF steel first slab. Iron Steel, 2010, 45(3): 38
    [10] 邓小旋, 王新华, 李林平, 等. 交换钢包过程对IF钢连铸板坯表层洁净度的影响. 北京科技大学学报, 2014, 36(7):880

    Deng X X, Wang X H, Li L P, et al. Effect of ladle change process on the surface cleanliness of IF steel continuous casting slabs. J Univ Sci Technol Beijing, 2014, 36(7): 880
    [11] Zhang Q Y, Wang L T, Wang X H. Influence of casting speed variation during unsteady continuous casting on non-metallic inclusions in IF steel slabs. ISIJ Int, 2006, 46(10): 1421 doi: 10.2355/isijinternational.46.1421
    [12] Kumar A, Choudhary S K, Ajmani S K. Distribution of macroinclusions across slab thickness. ISIJ Int, 2012, 52(12): 2305 doi: 10.2355/isijinternational.52.2305
    [13] 刘浏. RH真空精炼工艺与装备技术的发展. 钢铁, 2006, 41(8):1 doi: 10.3321/j.issn:0449-749X.2006.08.001

    Liu L. Development of process and equipment of RH vacuum refinery technology. Iron Steel, 2006, 41(8): 1 doi: 10.3321/j.issn:0449-749X.2006.08.001
    [14] Han C J, Ai L Q, Liu B S, et al. Decarburization mechanism of RH-MFB refining process. J Univ Sci Technol Beijing, 2006, 13(3): 218 doi: 10.1016/S1005-8850(06)60046-7
    [15] Yamaguchi K, Kishimoto Y, Sakuraya T, et al. Effect of refining conditions for ultra low carbon steel on decarburization reaction in RH degasser. ISIJ Int, 1992, 32(1): 126 doi: 10.2355/isijinternational.32.126
    [16] Takahashi M, Matsumoto H, Saito T. Mechanism of decarburization in RH degasser. ISIJ Int, 1995, 35(12): 1452 doi: 10.2355/isijinternational.35.1452
    [17] 李崇巍, 成国光, 王新华, 等. RH冶炼超低碳钢内部脱碳机理及控制工艺. 北京科技大学学报, 2011, 33(3):276

    Li C W, Cheng G G, Wang X H, et al. Internal decarburization mechanism and control technology of RH treatment for ultra-low carbon steel. J Univ Sci Technol Beijing, 2011, 33(3): 276
    [18] Park Y G, Yi K W. A new numerical model for predicting carbon concentration during RH degassing treatment. ISIJ Int, 2003, 43(9): 1403 doi: 10.2355/isijinternational.43.1403
    [19] Inoue S, Furuno Y, Usui T, et al. Acceleration of decarburization in RH vacuum degassing process. ISIJ Int, 1992, 32(1): 120 doi: 10.2355/isijinternational.32.120
    [20] Harashima K, Mizoguchi S, Matsuo M, et al. Rates of nitrogen and carbon removal from liquid iron in low content region under reduced pressures. ISIJ Int, 1992, 32(1): 111 doi: 10.2355/isijinternational.32.111
    [21] Liu B S, Zhu G S, Li H X, et al. Decarburization rate of RH refining for ultra low carbon steel. Int J Miner Metall Mater, 2010, 17(1): 22 doi: 10.1007/s12613-010-0104-3
    [22] Doo W C, Kim D Y, Kang S C, et al. The morphology of Al−Ti−O complex oxide inclusions formed in an ultra low-carbon steel melt during the RH process. Met Mater Int, 2007, 13(3): 249 doi: 10.1007/BF03027813
    [23] Hasunuma J, Kurose Y, Hiwasa S, et al. Production of ultra-low carbon steel by K-BOP process at Kawasaki Steel // Steelmaking Conference Proceedings. Detroit, 1990: 91
    [24] Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
    [25] 张先棹. 冶金传输原理. 北京: 冶金工业出版社, 1988

    Zhang X Z. Principles of Transport Phenomena in Metallurgy. Beijing: Metallurgical Industry Press, 1988
    [26] Zhong L C, Zeze M, Mukai K. Density of liquid IF steel containing Ti. ISIJ Int, 2005, 45(3): 312 doi: 10.2355/isijinternational.45.312
    [27] Wakoh M, Sano N. Behavior of alumina inclusions just after deoxidation. ISIJ Int, 2007, 47(5): 627 doi: 10.2355/isijinternational.47.627
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  540
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-19
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回