• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交流干扰下X100管线钢及其热影响区在库尔勒土壤模拟液中的腐蚀行为

杨永 王新华 陈迎春 位凯玲

杨永, 王新华, 陈迎春, 位凯玲. 交流干扰下X100管线钢及其热影响区在库尔勒土壤模拟液中的腐蚀行为[J]. 工程科学学报, 2020, 42(7): 894-901. doi: 10.13374/j.issn2095-9389.2019.07.21.002
引用本文: 杨永, 王新华, 陈迎春, 位凯玲. 交流干扰下X100管线钢及其热影响区在库尔勒土壤模拟液中的腐蚀行为[J]. 工程科学学报, 2020, 42(7): 894-901. doi: 10.13374/j.issn2095-9389.2019.07.21.002
YANG Yong, WANG Xin-hua, CHEN Ying-chun, WEI Kai-ling. Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference[J]. Chinese Journal of Engineering, 2020, 42(7): 894-901. doi: 10.13374/j.issn2095-9389.2019.07.21.002
Citation: YANG Yong, WANG Xin-hua, CHEN Ying-chun, WEI Kai-ling. Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference[J]. Chinese Journal of Engineering, 2020, 42(7): 894-901. doi: 10.13374/j.issn2095-9389.2019.07.21.002

交流干扰下X100管线钢及其热影响区在库尔勒土壤模拟液中的腐蚀行为

doi: 10.13374/j.issn2095-9389.2019.07.21.002
基金项目: 国家自然科学基金资助项目(51471011)
详细信息
    通讯作者:

    E-mail:wxhemma2005@163.com

  • 中图分类号: TG174.3

Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference

More Information
  • 摘要: 通过Gleeble热模拟实验机模拟了X100管线钢的粗晶热影响区(CGHAZ)及再热临界粗晶热影响区(ICCGHAZ)微观组织。采用电化学测试、浸泡实验及表面分析技术研究了交流干扰下X100管线钢母材、CGHAZ及ICCGHAZ在库尔勒土壤溶液中的腐蚀行为。结果表明:交流干扰下X100管线钢母材、CGHAZ及ICCGHAZ都表现为活性溶解,平均腐蚀速率随交流电流密度的增大而增加。交流干扰造成的极化电位振荡幅值及微观组织对X100管线钢母材、CGHAZ及ICCGHAZ的平均腐蚀速率和腐蚀形貌有着重要影响。在5 mA·cm‒2交流电流密度干扰下,母材的腐蚀电位最负、平均腐蚀速率最大,ICCGHAZ的腐蚀电位最正、平均腐蚀速率最小,CGHAZ的腐蚀电位及平均腐蚀速率都居中;在20 mA·cm‒2及50 mA·cm‒2交流电流密度干扰下,ICCGHAZ腐蚀电位最负、平均腐蚀速率最大,母材的腐蚀电位最正、平均腐蚀速率最小,CGHAZ的腐蚀电位及平均腐蚀速率都仍居中。在20 mA·cm‒2交流电流密度交流干扰下,X100管线钢发生局部腐蚀,CGHAZ、ICCGHAZ发生明显的晶界腐蚀,GCHAZ晶界腐蚀形貌呈缝隙状、ICCGHAZ晶界腐蚀形貌为连续孔洞。
  • 图  1  Gleeble热模拟实验热循环温度曲线

    Figure  1.  Cycle temperature curves of thermal simulation by Gleeble

    图  2  研究用试样示意图

    Figure  2.  Schematic diagram of the research sample

    图  3  电化学实验装置

    Figure  3.  Schematic diagram of experimental setup for electrochemical testing

    图  4  X100管线钢显微组织。(a)粗晶热影响区;(b)临界再热粗晶热影响区;(c)母材

    Figure  4.  Optical microstructure: (a) CGHAZ; (b) ICCGHAZ; (c) base steel

    图  5  X100管线钢母材和热影响区在库尔勒土壤模拟液中的腐蚀电位。(a)1 Hz频率测得;(b)在交流电流密度为5 mA·cm−2时2000 Hz频率测得;(c)在交流电流密度为20 mA·cm−2时2000 Hz频率测得;(d)在交流电流密度为50 mA·cm−2时2000 Hz频率测得

    Figure  5.  Corrosion potentials of the samples in simulated Korla soil solution: (a) measured by 1 Hz frequency; (b) measured by 2000 Hz under AC density of 5 mA·cm−2; (c) measured by 2000 Hz under AC density of 20 mA·cm−2; (d) measured by 2000 Hz under AC density of 50 mA·cm−2

    图  6  X100管线钢母材和热影响区在库尔勒土壤模拟液中极化曲线。(a)交流电流密度为5 mA·cm−2;(b)交流电流密度为20 mA·cm−2;(c)交流电流密度为50 mA·cm−2

    Figure  6.  Polarization curves of the samples in simulated Korla soil solution: (a) AC density of 5 mA·cm−2; (b) AC density of 20 mA·cm−2; (c) AC density of 50 mA·cm−2

    图  7  X100钢母材、CGHAZ和ICCGHAZ在20 mA·cm−2交流干扰下的腐蚀速率

    Figure  7.  Corrosion rates of X100 base steel, CGHAZ, ICCGHAZ under AC current densities of 20 mA·cm−2

    图  8  试样表面腐蚀形貌SEM图。(a)CGHAZ邻近母材;(b)ICCGHAZ邻近母材;(c)单独母材;(d)CGHAZ;(e)ICCGHAZ

    Figure  8.  SEM surface micrographs: (a)base steel adjacent to CGHAZ; (b) base steel adjacent to ICCGHAZ; (c) base steel; (d) CGHAZ; (e)ICCGHAZ

    图  9  试样表面腐蚀形貌SEM图。(a) 腐蚀较轻的CGHAZ;(b)腐蚀较轻的ICCGHAZ;(c)腐蚀较轻的母材;(d)腐蚀较严重的CGHAZ;(e)腐蚀较严重的ICCGHAZ;(f)腐蚀较严重的母材

    Figure  9.  SEM surface micrographs: (a) CGHAZ with slight corrosion; (b) ICCGHAZ with slight corrosion; (c) base steel with slight corrosion; (d) CGHAZ with serious corrosion; (e) ICCGHAZ with serious corrosion; (f) base steel with serious corrosion

  • [1] 杜伟, 李鹤林, 王海涛, 等. 国内外高性能油气输送管的研发现状. 油气储运, 2016, 35(6):577

    Du W, Li H L, Wang H T, et al. Research status of high-performance oil and gas pipelines in China and abroad. Oil Gas Storage Transp, 2016, 35(6): 577
    [2] Witek M. Possibilities of using X80, X100, X120 high-strength steels for onshore gas transmission pipelines. J Nat Gas Sci Eng, 2015, 27: 374 doi: 10.1016/j.jngse.2015.08.074
    [3] Maes M A, Dann M, Salama M M. Influence of grade on the reliability of corroding pipelines. Reliab Eng Syst Saf, 2008, 93(3): 447 doi: 10.1016/j.ress.2006.12.009
    [4] 刘成虎, 柳伟, 路民旭. X60钢及其焊接热影响区的腐蚀行为对比研究. 中国腐蚀与防护技术, 2008, 20(3):206

    Liu C H, Liu W, Lu M X. Comparative study on corrosion behavior of X60 steel and its welding heat-affected zone. Corros Sci Prot Technol, 2008, 20(3): 206
    [5] 范舟, 刘建仪, 李士伦, 等. X70管线钢焊接接头组织及其海水腐蚀规律. 西南石油大学学报: 自然科学版, 2009, 31(5):171

    Fan Z, Liu J Y, Li S L, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel. J Southwest Petrol Univ Sci Technol Ed, 2009, 31(5): 171
    [6] Mohammadi F, Eliyan F F, Alfantazi A. Corrosion of simulated weld HAZ of API X-80 pipeline steel. Corros Sci, 2012, 63: 323 doi: 10.1016/j.corsci.2012.06.014
    [7] Zhao W, Zou Y, Zou Z D, et al. The corrosion characterization in simulated heat-affected zones of X80 pipeline steel in near-neutral solution. Int J Electrochem Sci, 2015, 10(11): 9725
    [8] Shi C W, Zhang Y B, Liu P, et al. Effects of second thermal cycles on microstructure and CO2 corrosion behavior of X80 pipeline steel. Int J Electrochem Sci, 2018, 13(3): 2412
    [9] 张敏, 李乐, 程康康, 等. X100管线钢焊接接头在酸性环境中的腐蚀行为分析. 兵器材料科学与工程, 2018, 41(6):1

    Zhang M, Li L, Cheng K K, et al. Corrosion behavior of X100 pipeline steel welded joint in acidic environment. Ordnance Mater Sci Eng, 2018, 41(6): 1
    [10] Eliyan F F, Alfantazi A. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃–an electrochemical evaluation. Corros Sci, 2013, 74: 297 doi: 10.1016/j.corsci.2013.05.003
    [11] Eliyan F F, Icre F, Alfantazi A. Passivation of HAZs of API‐X100 pipeline steel in bicarbonate‐carbonate solutions at 298 K. Mater Corros, 2014, 65(12): 1162 doi: 10.1002/maco.201206985
    [12] Papadakis G A. Major hazard pipelines: a comparative study of onshore transmission accidents. J Loss Prev Process Ind, 1999, 12(1): 91 doi: 10.1016/S0950-4230(98)00048-5
    [13] Mustapha A, Charles E A, Hardie D. Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel. Corros Sci, 2012, 54: 5 doi: 10.1016/j.corsci.2011.08.030
    [14] Kulman F E. Effects of alternating currents in causing corrosion. Corrosion, 1961, 17(3): 34 doi: 10.5006/0010-9312-17.3.34
    [15] Gummow R A, Wakelin R G, Segall S M. AC corrosion― ―a new threat to pipeline integrity? // 1996 1st International Pipeline Conference. Calgary, 1996: 443
    [16] 符耀庆, 王秀通, 陈胜利. 南朗段埋地天然气管道杂散电流检测与治理. 表面技术, 2016, 45(2):22

    Fu Y Q, Wang X T, Chen S L. Stray current detection and treatment for buried natural gas pipeline of Nanlang segment. Surf Technol, 2016, 45(2): 22
    [17] Hanson H R, Smart J. AC corrosion on a pipeline located in an HVAC utility corridor // Corrosion 2004. New Orleans, 2004: NACE-04209
    [18] 梁平, 杜翠薇, 李晓刚. 库尔勒土壤模拟溶液的模拟性和加速性研究. 中国腐蚀与防护学报, 2011, 31(2):97

    Liang P, Du C W, Li X G. Simulating and accelerating properties of Kuerle soil simulated solution. J Chin Soc Corros Prot, 2011, 31(2): 97
    [19] Goidanich S, Lazzari L, Ormellese M. AC corrosion. Part 2: parameters influencing corrosion rate. Corros Sci, 2010, 52(3): 916 doi: 10.1016/j.corsci.2009.11.012
    [20] Lazzari L, Goidanich S, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper // CORROSION 2005. Houston, Texas, 2005: NACE-05189
    [21] 王晓霖, 闫茂成, 舒韵, 等. 破损涂层下管线钢的交流电干扰腐蚀行为. 中国腐蚀与防护学报, 2017, 37(4):341 doi: 10.11902/1005.4537.2017.118

    Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday. J Chin Soc Corros Prot, 2017, 37(4): 341 doi: 10.11902/1005.4537.2017.118
    [22] Wang X H, Song X T, Chen Y C, et al. Corrosion behavior of X70 and X80 pipeline steels in simulated soil solution. Int J Electrochem Sci, 2018, 13(7): 6436
    [23] Wang X H, Tang X H, Wang L W, et al. Synergistic effect of stray current and stress on corrosion of API X65 steel. J Nat Gas Sci Eng, 2014, 21: 474 doi: 10.1016/j.jngse.2014.09.007
    [24] 王新华, 杨国勇, 黄海, 等. 埋地钢质管道交流杂散电流腐蚀规律研究. 中国腐蚀与防护学报, 2013, 33(4):293

    Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline. J Chin Soc Corros Prot, 2013, 33(4): 293
    [25] 万红霞, 宋东东, 刘智勇, 等. 交流电对X80钢在近中性环境中腐蚀行为的影响. 金属学报, 2017, 53(5):575 doi: 10.11900/0412.1961.2016.00500

    Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment. Acta Metall Sin, 2017, 53(5): 575 doi: 10.11900/0412.1961.2016.00500
    [26] 朱敏, 杜翠薇, 李晓刚, 等. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响. 中国腐蚀与防护学报, 2014, 34(3):225 doi: 10.11902/1005.4537.2013.127

    Zhu M, Du C W, Li X G, et al. Effects of alternating current (AC) frequency on corrosion behavior of X80 pipeline steel in a simulated acid soil solution. J Chin Soc Corros Prot, 2014, 34(3): 225 doi: 10.11902/1005.4537.2013.127
    [27] 李学达, 李霞, 王世新, 等. 第二道次焊接热循环冷却速度对X100管线钢临界再热粗晶区组织及冲击性能的影响. 金属热处理, 2017, 42(9):66

    Li X D, Li X, Wang S X, et al. Influence of cooling rate on microstructure and impact properties of ICCGHAZ of X100 pipeline steel during the second pass thermal cycle. Heat Treat Met, 2017, 42(9): 66
    [28] Lalvani S B, Lin X. A revised model for predicting corrosion of materials induced by alternating voltages. Corros Sci, 1996, 38(10): 1709 doi: 10.1016/S0010-938X(96)00065-0
    [29] Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions. Corros Sci, 2014, 85: 304 doi: 10.1016/j.corsci.2014.04.030
    [30] Li M C, Cheng Y F. Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines. Electrochim Acta, 2007, 52(28): 8111 doi: 10.1016/j.electacta.2007.07.015
  • 加载中
图(9)
计量
  • 文章访问数:  583
  • HTML全文浏览量:  414
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-21
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回