Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference
-
摘要: 通过Gleeble热模拟实验机模拟了X100管线钢的粗晶热影响区(CGHAZ)及再热临界粗晶热影响区(ICCGHAZ)微观组织。采用电化学测试、浸泡实验及表面分析技术研究了交流干扰下X100管线钢母材、CGHAZ及ICCGHAZ在库尔勒土壤溶液中的腐蚀行为。结果表明:交流干扰下X100管线钢母材、CGHAZ及ICCGHAZ都表现为活性溶解,平均腐蚀速率随交流电流密度的增大而增加。交流干扰造成的极化电位振荡幅值及微观组织对X100管线钢母材、CGHAZ及ICCGHAZ的平均腐蚀速率和腐蚀形貌有着重要影响。在5 mA·cm‒2交流电流密度干扰下,母材的腐蚀电位最负、平均腐蚀速率最大,ICCGHAZ的腐蚀电位最正、平均腐蚀速率最小,CGHAZ的腐蚀电位及平均腐蚀速率都居中;在20 mA·cm‒2及50 mA·cm‒2交流电流密度干扰下,ICCGHAZ腐蚀电位最负、平均腐蚀速率最大,母材的腐蚀电位最正、平均腐蚀速率最小,CGHAZ的腐蚀电位及平均腐蚀速率都仍居中。在20 mA·cm‒2交流电流密度交流干扰下,X100管线钢发生局部腐蚀,CGHAZ、ICCGHAZ发生明显的晶界腐蚀,GCHAZ晶界腐蚀形貌呈缝隙状、ICCGHAZ晶界腐蚀形貌为连续孔洞。Abstract: In recent years, many accidents caused by alternating current (AC) corrosion have been reported. AC corrosion has become a serious potential damage to buried steel pipelines. The X100 pipeline steel is a very promising material for long-distance gas pipelines, and Korla soil is a typical saline-alkali soil of West China. The coarse-grained heat-affected zone (CGHAZ) and the intercritically reheated coarse-grained heat-affected zone (ICCGHAZ) were simulated by a Gleeble thermomechanical processing machine through different thermal cycle times, peak temperatures, and cooling rates. Electrochemical corrosion measurements, immersion experiments and surface analysis techniques were used to characterize the corrosion behavior of the base metal, CGHAZ, and ICCGHAZ of the X100 pipeline steel in simulated Korla soil solution under AC interference. The X100 pipeline steel base metal, CGHAZ, and ICCGHAZ exhibited active dissolution in the simulated Korla soil solution under AC interference, and the average corrosion rate increased with the increase in AC density. The amplitude of the polarization potential oscillation caused by AC interference and the microstructure had an important influence on the corrosion rate and corrosion morphology of the X100 pipeline steel base metal, CGHAZ and ICCGHAZ. Under the interference of 5 mA·cm‒2 AC density, the X100 pipeline steel base material shows the most negative corrosion potential and the largest average corrosion rate, while the ICCGHAZ shows the most positive corrosion potential and the smallest average corrosion rate. Under the interferences of 20 and 50 mA·cm‒2 AC densities, the ICCGHAZ of X100 pipeline steel shows the most negative corrosion potential and the largest average corrosion rate, while the base metal shows the most positive corrosion potential and the smallest average corrosion rate. Under the interference of 20 mA·cm‒2 AC density, the X100 pipeline steel is locally corroded. CGHAZ and ICCGHAZ have obvious grain boundary corrosion, whereby GCHAZ grain boundary corrosion morphology is slit-shaped, and ICCGHAZ grain boundary corrosion morphology is continuous pores.
-
图 5 X100管线钢母材和热影响区在库尔勒土壤模拟液中的腐蚀电位。(a)1 Hz频率测得;(b)在交流电流密度为5 mA·cm−2时2000 Hz频率测得;(c)在交流电流密度为20 mA·cm−2时2000 Hz频率测得;(d)在交流电流密度为50 mA·cm−2时2000 Hz频率测得
Figure 5. Corrosion potentials of the samples in simulated Korla soil solution: (a) measured by 1 Hz frequency; (b) measured by 2000 Hz under AC density of 5 mA·cm−2; (c) measured by 2000 Hz under AC density of 20 mA·cm−2; (d) measured by 2000 Hz under AC density of 50 mA·cm−2
图 9 试样表面腐蚀形貌SEM图。(a) 腐蚀较轻的CGHAZ;(b)腐蚀较轻的ICCGHAZ;(c)腐蚀较轻的母材;(d)腐蚀较严重的CGHAZ;(e)腐蚀较严重的ICCGHAZ;(f)腐蚀较严重的母材
Figure 9. SEM surface micrographs: (a) CGHAZ with slight corrosion; (b) ICCGHAZ with slight corrosion; (c) base steel with slight corrosion; (d) CGHAZ with serious corrosion; (e) ICCGHAZ with serious corrosion; (f) base steel with serious corrosion
-
[1] 杜伟, 李鹤林, 王海涛, 等. 国内外高性能油气输送管的研发现状. 油气储运, 2016, 35(6):577Du W, Li H L, Wang H T, et al. Research status of high-performance oil and gas pipelines in China and abroad. Oil Gas Storage Transp, 2016, 35(6): 577 [2] Witek M. Possibilities of using X80, X100, X120 high-strength steels for onshore gas transmission pipelines. J Nat Gas Sci Eng, 2015, 27: 374 doi: 10.1016/j.jngse.2015.08.074 [3] Maes M A, Dann M, Salama M M. Influence of grade on the reliability of corroding pipelines. Reliab Eng Syst Saf, 2008, 93(3): 447 doi: 10.1016/j.ress.2006.12.009 [4] 刘成虎, 柳伟, 路民旭. X60钢及其焊接热影响区的腐蚀行为对比研究. 中国腐蚀与防护技术, 2008, 20(3):206Liu C H, Liu W, Lu M X. Comparative study on corrosion behavior of X60 steel and its welding heat-affected zone. Corros Sci Prot Technol, 2008, 20(3): 206 [5] 范舟, 刘建仪, 李士伦, 等. X70管线钢焊接接头组织及其海水腐蚀规律. 西南石油大学学报: 自然科学版, 2009, 31(5):171Fan Z, Liu J Y, Li S L, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel. J Southwest Petrol Univ Sci Technol Ed, 2009, 31(5): 171 [6] Mohammadi F, Eliyan F F, Alfantazi A. Corrosion of simulated weld HAZ of API X-80 pipeline steel. Corros Sci, 2012, 63: 323 doi: 10.1016/j.corsci.2012.06.014 [7] Zhao W, Zou Y, Zou Z D, et al. The corrosion characterization in simulated heat-affected zones of X80 pipeline steel in near-neutral solution. Int J Electrochem Sci, 2015, 10(11): 9725 [8] Shi C W, Zhang Y B, Liu P, et al. Effects of second thermal cycles on microstructure and CO2 corrosion behavior of X80 pipeline steel. Int J Electrochem Sci, 2018, 13(3): 2412 [9] 张敏, 李乐, 程康康, 等. X100管线钢焊接接头在酸性环境中的腐蚀行为分析. 兵器材料科学与工程, 2018, 41(6):1Zhang M, Li L, Cheng K K, et al. Corrosion behavior of X100 pipeline steel welded joint in acidic environment. Ordnance Mater Sci Eng, 2018, 41(6): 1 [10] Eliyan F F, Alfantazi A. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃–an electrochemical evaluation. Corros Sci, 2013, 74: 297 doi: 10.1016/j.corsci.2013.05.003 [11] Eliyan F F, Icre F, Alfantazi A. Passivation of HAZs of API‐X100 pipeline steel in bicarbonate‐carbonate solutions at 298 K. Mater Corros, 2014, 65(12): 1162 doi: 10.1002/maco.201206985 [12] Papadakis G A. Major hazard pipelines: a comparative study of onshore transmission accidents. J Loss Prev Process Ind, 1999, 12(1): 91 doi: 10.1016/S0950-4230(98)00048-5 [13] Mustapha A, Charles E A, Hardie D. Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel. Corros Sci, 2012, 54: 5 doi: 10.1016/j.corsci.2011.08.030 [14] Kulman F E. Effects of alternating currents in causing corrosion. Corrosion, 1961, 17(3): 34 doi: 10.5006/0010-9312-17.3.34 [15] Gummow R A, Wakelin R G, Segall S M. AC corrosion― ―a new threat to pipeline integrity? // 1996 1st International Pipeline Conference. Calgary, 1996: 443 [16] 符耀庆, 王秀通, 陈胜利. 南朗段埋地天然气管道杂散电流检测与治理. 表面技术, 2016, 45(2):22Fu Y Q, Wang X T, Chen S L. Stray current detection and treatment for buried natural gas pipeline of Nanlang segment. Surf Technol, 2016, 45(2): 22 [17] Hanson H R, Smart J. AC corrosion on a pipeline located in an HVAC utility corridor // Corrosion 2004. New Orleans, 2004: NACE-04209 [18] 梁平, 杜翠薇, 李晓刚. 库尔勒土壤模拟溶液的模拟性和加速性研究. 中国腐蚀与防护学报, 2011, 31(2):97Liang P, Du C W, Li X G. Simulating and accelerating properties of Kuerle soil simulated solution. J Chin Soc Corros Prot, 2011, 31(2): 97 [19] Goidanich S, Lazzari L, Ormellese M. AC corrosion. Part 2: parameters influencing corrosion rate. Corros Sci, 2010, 52(3): 916 doi: 10.1016/j.corsci.2009.11.012 [20] Lazzari L, Goidanich S, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper // CORROSION 2005. Houston, Texas, 2005: NACE-05189 [21] 王晓霖, 闫茂成, 舒韵, 等. 破损涂层下管线钢的交流电干扰腐蚀行为. 中国腐蚀与防护学报, 2017, 37(4):341 doi: 10.11902/1005.4537.2017.118Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday. J Chin Soc Corros Prot, 2017, 37(4): 341 doi: 10.11902/1005.4537.2017.118 [22] Wang X H, Song X T, Chen Y C, et al. Corrosion behavior of X70 and X80 pipeline steels in simulated soil solution. Int J Electrochem Sci, 2018, 13(7): 6436 [23] Wang X H, Tang X H, Wang L W, et al. Synergistic effect of stray current and stress on corrosion of API X65 steel. J Nat Gas Sci Eng, 2014, 21: 474 doi: 10.1016/j.jngse.2014.09.007 [24] 王新华, 杨国勇, 黄海, 等. 埋地钢质管道交流杂散电流腐蚀规律研究. 中国腐蚀与防护学报, 2013, 33(4):293Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline. J Chin Soc Corros Prot, 2013, 33(4): 293 [25] 万红霞, 宋东东, 刘智勇, 等. 交流电对X80钢在近中性环境中腐蚀行为的影响. 金属学报, 2017, 53(5):575 doi: 10.11900/0412.1961.2016.00500Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment. Acta Metall Sin, 2017, 53(5): 575 doi: 10.11900/0412.1961.2016.00500 [26] 朱敏, 杜翠薇, 李晓刚, 等. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响. 中国腐蚀与防护学报, 2014, 34(3):225 doi: 10.11902/1005.4537.2013.127Zhu M, Du C W, Li X G, et al. Effects of alternating current (AC) frequency on corrosion behavior of X80 pipeline steel in a simulated acid soil solution. J Chin Soc Corros Prot, 2014, 34(3): 225 doi: 10.11902/1005.4537.2013.127 [27] 李学达, 李霞, 王世新, 等. 第二道次焊接热循环冷却速度对X100管线钢临界再热粗晶区组织及冲击性能的影响. 金属热处理, 2017, 42(9):66Li X D, Li X, Wang S X, et al. Influence of cooling rate on microstructure and impact properties of ICCGHAZ of X100 pipeline steel during the second pass thermal cycle. Heat Treat Met, 2017, 42(9): 66 [28] Lalvani S B, Lin X. A revised model for predicting corrosion of materials induced by alternating voltages. Corros Sci, 1996, 38(10): 1709 doi: 10.1016/S0010-938X(96)00065-0 [29] Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions. Corros Sci, 2014, 85: 304 doi: 10.1016/j.corsci.2014.04.030 [30] Li M C, Cheng Y F. Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines. Electrochim Acta, 2007, 52(28): 8111 doi: 10.1016/j.electacta.2007.07.015 -