• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温注氢Fe-Cr合金在不同温度退火后位错环的表征

杜玉峰 崔丽娟 万发荣

杜玉峰, 崔丽娟, 万发荣. 室温注氢Fe-Cr合金在不同温度退火后位错环的表征[J]. 工程科学学报, 2019, 41(8): 1016-1028. doi: 10.13374/j.issn2095-9389.2019.08.007
引用本文: 杜玉峰, 崔丽娟, 万发荣. 室温注氢Fe-Cr合金在不同温度退火后位错环的表征[J]. 工程科学学报, 2019, 41(8): 1016-1028. doi: 10.13374/j.issn2095-9389.2019.08.007
DU Yu-feng, CUI Li-juan, WAN Fa-rong. Characterization of dislocation loops in hydrogen ion-implanted Fe-Cr alloy annealed at different temperatures[J]. Chinese Journal of Engineering, 2019, 41(8): 1016-1028. doi: 10.13374/j.issn2095-9389.2019.08.007
Citation: DU Yu-feng, CUI Li-juan, WAN Fa-rong. Characterization of dislocation loops in hydrogen ion-implanted Fe-Cr alloy annealed at different temperatures[J]. Chinese Journal of Engineering, 2019, 41(8): 1016-1028. doi: 10.13374/j.issn2095-9389.2019.08.007

室温注氢Fe-Cr合金在不同温度退火后位错环的表征

doi: 10.13374/j.issn2095-9389.2019.08.007
基金项目: 

国家自然科学基金资助项目(51471026)

详细信息
  • 中图分类号: TL62+7

Characterization of dislocation loops in hydrogen ion-implanted Fe-Cr alloy annealed at different temperatures

  • 摘要: 利用透射电子显微镜,通过构建位错环在不同晶带轴下的投影图结合位错环消光判据,对室温注氢后Fe-9%Cr模型合金在400、500及550℃退火形成的1/2 〈111〉和〈100〉两种类型的位错环进行了表征. 实验结果表明,室温注氢Fe-9%Cr合金中柏氏矢量为〈100〉型位错环的数量随着退火温度的升高而逐渐增加. 在400和500℃退火后,〈100〉型位错环所占比例分别为16.48%、92.78%;当退火温度升高到550℃时,位错环全部转变为〈100〉型位错环. Fe-9%Cr合金中位错环类型转变温度区间为400~500℃,与纯铁相比,添加Cr元素能够使位错环类型转变温度升高.
  • [1] Schäublin R, Chiu Y L. Effect of helium on irradiation-induced hardening of iron:a simulation point of view. J Nucl Mater, 2007, 362(2-3):152
    [2] Matijasevic M, Almazouzi A. Effect of Cr on the mechanical properties and microstructure of Fe-Cr model alloys after n-irradiation. J Nucl Mater, 2008, 377(1):147
    [4] Kimura A. Current status of reduced-activation ferritic/martensitic steels R&D for fusion energy. Mater Trans, 2005, 46(3):394
    [6] Willaime F, Fu C C, Marinica M C, et al. Stability and mobility of self-interstitials and small interstitial clusters in α-iron:ab initio and empirical potential calculations. Nucl Instrum Methods Phys Res Sect B, 2005, 228(1-4):92
    [7] Wirth B D, Odette G R, Maroudas D, et al. Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron. J Nucl Mater, 2000, 276(1-3):33
    [8] Olsson P, Domain C, Wallenius J. Ab initio study of Cr interactions with point defects in bcc Fe. Phys Rev B, 2007, 75(1):014110
    [9] Olsson P. Ab initio study of interstitial migration in Fe-Cr alloys. J Nucl Mater, 2009, 386-388:86
    [10] Chen J, Jung P, Hoffelner W, et al. Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress. Acta Mater, 2008, 56(2):250
    [11] Kirk M A, Robertson I M, Jenkins M L, et al. The collapse of defect cascades to dislocation loops. J Nucl Mater, 1987, 149(1):21
    [12] Osetsky Y N, Bacon D J, Serra A, et al. Stability and mobility of defect clusters and dislocation loops in metals. J Nucl Mater, 2000, 276(1-3):65
    [13] Kuramoto E. Computer simulation of fundamental features of a bias factor. J Nucl Mater, 1992, 191-194:1279
    [14] Eyre B L, Bartlett A F. An electron microscope study of neutron irradiation damage in alpha-iron. Philos Mag, 1965, 12(116):261
    [15] Masters B C. Dislocation loops in irradiated iron. Nature, 1963, 200(4903):254
    [16] Jenkins M L, Yao Z, Hernández-Mayoral M, et al. Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys. J Nucl Mater, 2009, 389(2):197
    [17] Prokhodtseva A, Décamps B, Ramar A, et al. Impact of He and Cr on defect accumulation in ion-irradiated ultrahigh-purity Fe(Cr) alloys. Acta Mater, 2013, 61(18):6958
    [19] Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure. Nucl Instrum Methods Phys Res Sect B, 2013, 310:75
    [20] Yao B, Edwards D J, Kurtz R J. TEM characterization of dislocation loops in irradiated bcc Fe-based steels. J Nucl Mater, 2013, 434(1-3):402
    [21] Yao Z, Hernández-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1:damage evolution in thin-foils at lower doses. Philos Mag, 2008, 88(21):2851
    [22] Hernández-Mayoral M, Yao Z, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2:damage evolution in thin-foils at higher doses. Philos Mag, 2008, 88(21):2881
    [23] Dudarev S L, Bullough R, Derlet P M. Effect of the α-γ phase transition on the stability of dislocation loops in bcc iron. Phys Rev Lett, 2008, 100(13):135503-1
    [24] Marian J, Wirth B D, Schäublin R, et al. 〈100〉-loop characterization in α-Fe:comparison between experiments and modeling. J Nucl Mater, 2002, 307-311:871
    [25] Marian J, Wirth B D, Perlado J M. Mechanism of formation and growth of 〈100〉 interstitial loops in ferritic materials. Phys Rev Lett, 2002, 88(25):255507-1
    [26] Masters B C. Dislocation loops in irradiated iron. Philos Mag, 1965, 11(113):881
    [27] Arakawa K, Hatanaka M, Kuramoto E, et al. Changes in the Burgers vector of perfect dislocation loops without contact with the external dislocations. Phys Rev Lett, 2006, 96(12):125506-1
    [28] Yao Z, Jenkins M L, Hernández-Mayoral M, et al. The temperature dependence of heavy-ion damage in iron:a microstructural transition at elevated temperatures. Philos Mag, 2010, 90(35-36):4623
    [29] Porollo S I, Dvoriashin A M, Vorobyev A N, et al. The microstructure and tensile properties of Fe-Cr alloys after neutron irradiation at 400℃ to 5.5-7.1 dpa. J Nucl Mater, 1998, 256(2-3):247
    [30] Xu S, Yao Z, Jenkins M L. TEM characterisation of heavy-ion irradiation damage in Fe-Cr alloys. J Nucl Mater, 2009, 386-388:161
  • 加载中
计量
  • 文章访问数:  481
  • HTML全文浏览量:  121
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-16

目录

    /

    返回文章
    返回