• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静水压与溶解氧耦合作用对低合金高强钢腐蚀电化学行为的影响

苏宏艺 魏世丞 梁义 王玉江 王博 袁悦 徐滨士

苏宏艺, 魏世丞, 梁义, 王玉江, 王博, 袁悦, 徐滨士. 静水压与溶解氧耦合作用对低合金高强钢腐蚀电化学行为的影响[J]. 工程科学学报, 2019, 41(8): 1029-1036. doi: 10.13374/j.issn2095-9389.2019.08.008
引用本文: 苏宏艺, 魏世丞, 梁义, 王玉江, 王博, 袁悦, 徐滨士. 静水压与溶解氧耦合作用对低合金高强钢腐蚀电化学行为的影响[J]. 工程科学学报, 2019, 41(8): 1029-1036. doi: 10.13374/j.issn2095-9389.2019.08.008
SU Hong-yi, WEI Shi-cheng, LIANG Yi, WANG Yu-jiang, WANG Bo, YUAN Yue, XU Bin-shi. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel[J]. Chinese Journal of Engineering, 2019, 41(8): 1029-1036. doi: 10.13374/j.issn2095-9389.2019.08.008
Citation: SU Hong-yi, WEI Shi-cheng, LIANG Yi, WANG Yu-jiang, WANG Bo, YUAN Yue, XU Bin-shi. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel[J]. Chinese Journal of Engineering, 2019, 41(8): 1029-1036. doi: 10.13374/j.issn2095-9389.2019.08.008

静水压与溶解氧耦合作用对低合金高强钢腐蚀电化学行为的影响

doi: 10.13374/j.issn2095-9389.2019.08.008
基金项目: 

国家自然科学基金资助项目(51675533,51701238)

"十三五"装备预研共用技术资助项目(404010205)

详细信息
  • 中图分类号: TG172

Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel

  • 摘要: 采用动电位极化测试和扫描电子显微镜/能谱仪表征,通过理想动电位极化曲线分析方法和微观腐蚀形貌观察研究了静水压与溶解氧耦合作用对低合金高强钢在质量分数为3.5% NaCl溶液中腐蚀电化学行为的影响. 结果表明:随着静水压和溶解氧溶度的同时增大,腐蚀电位先增高而后逐渐降低,腐蚀电流呈非线性增长;静水压与溶解氧在腐蚀过程中存在相互竞争抑制关系,在静水压与溶解氧同时增长过程中,溶解氧首先促进阴极反应过程并抑制阳极反应过程,而后静水压逐渐加速阳极过程并对阴极反应过程有一定的抑制作用;静水压与溶解氧耦合作用加速了腐蚀产物膜的生长,增加了低合金高强钢表面点蚀坑的数量和生长尺寸.
  • [1] Beccaria A M, Poggi G. Influence of hydrostatic pressure on pitting of aluminum in sea water. Br Corros J, 1985, 20(4):183
    [2] Beccaria A M, Poggi G, Gingaud D, et al.Effect of hydrostatic pressure on passivating power of corrosion layers formed on 6061 T6 aluminum alloy in sea water. Br Corros J, 1994, 29(1):65
    [3] Zhang C, Zhang Z W, Liu L. Degradation in pitting resistance of 316L stainless steel under hydrostatic pressure. Electrochim Acta, 2016, 210:401
    [4] Yang Y G, Zhang T, Shao Y W, et al.Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel. Corros Sci, 2010, 52(8):2697
    [5] Yang Y G, Zhang T, Shao Y W, et al.New understanding of the effect of hydrostatic pressure on the corrosion of Ni-Cr-Mo-V high strength steel. Corros Sci, 2013, 73:250
    [6] Sun H J, Liu L, Li Y, et al.Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel. J Electrochem Soc, 2013, 160(3):C89
    [7] Zhu X F, Liu L, Song Y, et al.Oxygen evolution and porous anodic alumina formation. Mater Lett, 2008, 62(24):4038
    [8] Crossland A C, Habazaki H, Shimizu K, et al. Residual flaws due to formation of oxygen bubbles in anodic alumina. Corros Sci, 1999, 41(10):1945
    [9] Feng Z C, Cheng X Q, Dong C F, et al. Effects of dissolved oxygen on electrochemical and semiconductor properties of 316L stainless steel. J Nucl Mater, 2010, 407(3):171
    [10] Le D P, Ji W S, Kim J G, et al. Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system. Corros Sci, 2008, 50(4):1195
    [11] Song S Z. Investigative Methods of Corrosion Electrochemistry. Beijing:Chemical Industry Press, 1988
    [12] Melchers R E. Effect of small compositional changes on marine immersion corrosion of low alloy steels. Corros Sci, 2004, 46(7):1669
    [13] Carvalho D S, Joia C J B, Mattos O R. Corrosion rate of iron and iron-chromium alloys in CO2-medium. Corros Sci, 2005, 47(12):2974
    [14] Xu L Y, Cheng Y F. An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution. Corros Sci, 2012, 59:103
    [15] Xu L Y, Cheng Y F. Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution. Corros Sci, 2012, 64:145
    [16] Wang Y X, Zhao W M, Ai H, et al. Effects of strain on the corrosion behaviour of X80 steel. Corros Sci, 2011, 53(9):2761
  • 加载中
计量
  • 文章访问数:  476
  • HTML全文浏览量:  116
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26

目录

    /

    返回文章
    返回