• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝合金表面水滑石薄膜的制备及其耐蚀性研究进展

彭光春 贾文超 乔芊芊 张展 黄康 张天翼 方涛 王怡 张博威

彭光春, 贾文超, 乔芊芊, 张展, 黄康, 张天翼, 方涛, 王怡, 张博威. 铝合金表面水滑石薄膜的制备及其耐蚀性研究进展[J]. 工程科学学报, 2020, 42(1): 1-15. doi: 10.13374/j.issn2095-9389.2019.08.28.003
引用本文: 彭光春, 贾文超, 乔芊芊, 张展, 黄康, 张天翼, 方涛, 王怡, 张博威. 铝合金表面水滑石薄膜的制备及其耐蚀性研究进展[J]. 工程科学学报, 2020, 42(1): 1-15. doi: 10.13374/j.issn2095-9389.2019.08.28.003
PENG Guang-chun, JIA Wen-chao, QIAO Qian-qian, ZHANG Zhan, HUANG Kang, ZHANG Tian-yi, FANG Tao, WANG Yi, ZHANG Bo-wei. Research progress on the preparation and corrosion resistance of layered double hydroxides film on aluminum alloys[J]. Chinese Journal of Engineering, 2020, 42(1): 1-15. doi: 10.13374/j.issn2095-9389.2019.08.28.003
Citation: PENG Guang-chun, JIA Wen-chao, QIAO Qian-qian, ZHANG Zhan, HUANG Kang, ZHANG Tian-yi, FANG Tao, WANG Yi, ZHANG Bo-wei. Research progress on the preparation and corrosion resistance of layered double hydroxides film on aluminum alloys[J]. Chinese Journal of Engineering, 2020, 42(1): 1-15. doi: 10.13374/j.issn2095-9389.2019.08.28.003

铝合金表面水滑石薄膜的制备及其耐蚀性研究进展

doi: 10.13374/j.issn2095-9389.2019.08.28.003
基金项目: 国家自然科学基金青年科学基金资助项目(51901018);中国博士后科学基金资助项目(2019M660456);中央高校基本科研业务费资助项目(06500119)
详细信息
    通讯作者:

    E-mail:bwzhang@ustb.edu.cn

  • 中图分类号: TG150.30

Research progress on the preparation and corrosion resistance of layered double hydroxides film on aluminum alloys

More Information
  • 摘要: 铝合金具有密度小,比强度高等一系列优异的性能而受到研究者的关注,但其易腐蚀的特点严重制约了其应用范围,因此需要采取适当的方法增强其耐蚀性能。水滑石薄膜具有良好的耐蚀性与离子交换性能,近年来在铝合金表面改性技术的研究逐渐增多。本文介绍了多种制备水滑石薄膜的方法,探究不同实验条件对薄膜形貌与耐蚀性的影响;详述了几种常用的改性方法与原理,对目前研究中存在的局限性进行了讨论,并展望了未来研究的重点与发展方向。
  • 图  1  不同Zn2+浓度条件下在AA2024铝合金基体制备的Zn‒Al水滑石薄膜的扫描电镜图. (a,b) 5 mmol·L‒1 Zn2+;(c,d) 50 mmol·L‒1 Zn2+;(e,f) 500 mmol·L‒1 Zn2+

    Figure  1.  SEM images of AA2024-T3 substrates covered with Zn‒Al LDHs thin film prepared under different Zn2+ concentrations: (a,b) 5 mmol·L‒1 Zn2+; (c,d) 50 mmol·L‒1 Zn2+; (e,f) 500 mmol·L‒1 Zn2+

    图  2  复合涂层的形貌图. (a) 铝合金;(b) 微弧氧化陶瓷层;(c) 微弧氧化/Zn‒Al水滑石薄膜;(d) 负载钒酸根的微弧氧化/Zn‒Al水滑石薄膜

    Figure  2.  SEM images of composite coatings: (a) aluminum alloys; (b) MAO ceramic layer; (c) MAO/Zn‒Al LDHs thin film; (d) MAO/Zn‒Al‒VOx LDHs thin film

    图  3  水热处理30 min后的微弧氧化/Zn‒Al水滑石薄膜的扫描电镜图像。(a)微孔;(b)微裂纹

    Figure  3.  SEM images of the MAO/Zn‒Al LDHs thin films after 30 min hydrothermal treatment: (a) micro-pores; (b) micro-cracks

    图  4  不同样品表面的水滴形状与相应的接触角。(a)铝合金;(b)月桂酸改性的铝合金;(c)Zn‒Al水滑石薄膜;(d)月桂酸改性后的Zn‒Al水滑石薄膜

    Figure  4.  Shapes of water droplets on the surface of different samples and corresponding CAs: (a) Al alloys; (b) Al‒La; (c) Zn‒Al LDHs thin film; (d) Zn‒Al LDHs‒La thin film

    图  5  负载月桂酸根的Zn‒Al水滑石薄膜的耐蚀性保护机制示意图

    Figure  5.  Schematic illustration of the corrosion protection mechanism for the Zn‒Al LDHs thin film loaded with laurate anions

    图  6  不同水滑石薄膜样品用1H,1H,2H,2H-全氟癸基三甲氧基硅烷进行表面改性后的接触角与对应水滴照片。(a) Mg‒Al水滑石,接触角为168.8°; (b) Co‒Al水滑石,接触角为169.6°;(c) Ni‒Al水滑石,接触角为165.8°;(d) Zn‒Al水滑石,接触角为164.2°

    Figure  6.  CA of different LDHs thin film samples with surface modification with PFDTMS and the corresponding photographs of water droplets on the surfaces: (a) Mg‒Al LDHs, CA=168.8°; (b) Co‒Al LDHs, CA=169.6°; (c) Ni‒Al LDHs, CA=165.8°; (d) Zn‒Al LDHs, CA=164.2°

    图  7  水滑石薄膜捕获Cl与释放缓蚀剂的示意图[9]

    Figure  7.  Schematic representation of the entrapment Cl and the triggered release of anionic corrosion inhibitors from LDHs

    图  8  具有两个针孔缺陷的Zn‒Al‒NaVO3水滑石薄膜浸泡不同时间后的扫描振动电极图与光学照片

    Figure  8.  SVET maps and optical photographs of a sample of Zn‒Al‒NaVO3 LDHs thin film with two pin-hole defects

    图  9  Li‒Al天冬氨酸水滑石薄膜微观形貌分析。(a) 截面形貌;(b) 表面形貌;具有人工划痕的Li‒Al天冬氨酸水滑石薄膜在3.5%(质量分数)NaCl溶液浸泡不同时间后的形貌,(c) 0;(d) 2 d;(e) 6 d;(f) 9 d;(g) 20 d

    Figure  9.  SEM images of Li‒Al‒Asp LDHs: (a) cross-section; (b) surface; SEM images of Li‒Al‒Asp LDHs with artificial scratch after immersion in 3.5% (mass fraction) NaCl solution for different times: (c) 0; (d) 2 d; (e) 6 d; (f) 9 d; (g) 20 d

    图  10  在0.05 mol·L‒1的NaCl溶液中铝合金与负载不同缓释的水滑石薄膜的极化曲线

    Figure  10.  Polarization curves of the bare Al alloy and LDHs loaded with different corrosion inhibitor samples in 0.05 mol·L‒1 NaCl solution

    图  11  不同方法处理后的水滑石薄膜培养24 h后的菌落照片。(a) 大肠杆菌;(b) 枯草芽孢杆菌

    Figure  11.  Photograph of bacterial colonies after incubation with different LDHs coatings for 24 h: (a) E. coli; (b) B. subtilis

  • [1] 张玉林, 于佩航, 韦银河, 等. 石墨烯添加剂对铝合金表面微弧氧化膜耐磨耐蚀性的影响. 材料热处理学报, 2017, 38(8):103

    Zhang Y L, Yu P H, Wei Y H, et al. Influence of graphene additive on wear resistance and corrosion resistance of micro arc oxidation coating formed on LY12 aluminium alloy surface. Trans Mater Heat Treat, 2017, 38(8): 103
    [2] Laurino A, Andrieu E, Harouard J P, et al. Effect of corrosion on the fatigue life and fracture mechanisms of 6101 aluminum alloy wires for car manufacturing applications. Mater Des, 2014, 53: 236 doi: 10.1016/j.matdes.2013.06.079
    [3] 张玉圣, 王友彬, 李纯民, 等. 6061铝合金表面ZnAl−LDHs层的制备及其耐腐蚀性能. 金属学报, 2018, 54(10):1417 doi: 10.11900/0412.1961.2018.00020

    Zhang Y S, Wang Y B, Li C M, et al. Preparation and corrosion resistance of the ZnAl−LDHs film on 6061 Al alloy surface. Acta Metall Sin, 2018, 54(10): 1417 doi: 10.11900/0412.1961.2018.00020
    [4] 聂铭, 黄丰, 王珍高, 等. 聚吡咯/聚多巴胺的电化学合成及其对铝合金的耐蚀性影响. 复合材料学报, 2018, 36(10):2364

    Nie M, Huang F, Wang Z G, et al. Electrochemical synthesis of polypyrrole/polydopamine for aluminum alloy corrosion inhibition. Acta Mater Compos Sin, 2018, 36(10): 2364
    [5] 徐袛尚, 周强, 朱宗涛, 等. 脉冲频率对A7N01P-T4铝合金微弧氧化膜微观结构和耐蚀性的影响. 热加工工艺, 2019, 48(14):112

    Xu Z S, Zhou Q, Zhu Z T, et al. Effects of pulse frequency on microstructure and corrosion resistance of micro-arc oxidation coating on A7N01P-T4 aluminum alloy. Hot Work Technol, 2019, 48(14): 112
    [6] Tedim J, Zheludkevich M L, Bastos A C, et al. Effect of surface treatment on the performance of LDH conversion films. ECS Electrochem Lett, 2014, 3(1): C4
    [7] Cao Y H, Zheng D J, Li X L, et al. Enhanced corrosion resistance of superhydrophobic layered double hydroxide films with long-term stability on Al substrate. ACS Appl Mater Interfaces, 2018, 10(17): 15150 doi: 10.1021/acsami.8b02280
    [8] Guo L, Wu W, Zhou Y F, et al. Layered double hydroxide coatings on magnesium alloys: a review. J Mater Sci Technol, 2018, 34(9): 1455 doi: 10.1016/j.jmst.2018.03.003
    [9] Zhang G, Wu L, Tang A T, et al. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corros Sci, 2018, 139: 370 doi: 10.1016/j.corsci.2018.05.010
    [10] Gong M, Li Y G, Wang H L, et al. An advanced Ni−Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc, 2013, 135(23): 8452 doi: 10.1021/ja4027715
    [11] Song F, Hu X L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun, 2014, 5: 4477 doi: 10.1038/ncomms5477
    [12] Liu Y P, Liang X, Gu L, et al. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat Commun, 2018, 9: 2609 doi: 10.1038/s41467-018-05019-5
    [13] Tang P G, Feng Y J, Li D Q. Fabrication and properties of acid blue 25 dye−intercalated layered double hydroxides film on an anodic alumina/aluminum substrate. J Phys Chem Solids, 2012, 73(12): 1505 doi: 10.1016/j.jpcs.2011.12.027
    [14] Tang P G, Feng Y J, Li D Q. Fabrication and properties of Acid Yellow 49 dye−intercalated layered double hydroxides film on an alumina-coated aluminum substrate. Dyes Pigm, 2011, 91(2): 120 doi: 10.1016/j.dyepig.2011.03.012
    [15] Zhang C X, Luo X H, Pan X Y, et al. Self-healing Li−Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy. Appl Surf Sci, 2017, 394: 275 doi: 10.1016/j.apsusc.2016.10.034
    [16] 巴志新, 陈永俊, 董强胜, 等. 镁合金表面水滑石膜耐蚀性研究进展. 材料导报, 2017, 31(6):144

    Ba Z X, Chen Y J, Dong Q S, et al. Research progress on corrosion resistance of hydrotalcite films on magnesium alloys. Mater Rev, 2017, 31(6): 144
    [17] Wang F Y, Guo Z G. In-situ growth of durable superhydrophobic Mg−Al layered double hydroxides nanoplatelets on aluminum alloys for corrosion resistance. J Alloys Compd, 2018, 767: 382 doi: 10.1016/j.jallcom.2018.07.086
    [18] Tedim J, Zheludkevich M L, Salak A N, et al. Nanostructured LDH-container layer with active protection functionality. J Mater Chem, 2011, 21(39): 15464 doi: 10.1039/c1jm12463c
    [19] Li Y D, Li S M, Zhang Y, et al. Enhanced protective Zn−Al layered double hydroxide film fabricated on anodized 2198 aluminum alloy. J Alloys Compd, 2015, 630: 29 doi: 10.1016/j.jallcom.2014.12.176
    [20] Kaseem M, Ko Y G. Benzoate intercalated Mg−Al−ayered double hydroxides (LDHs) as efficient chloride traps for plasma electrolysis coatings. J Alloys Compd, 2019, 787: 772 doi: 10.1016/j.jallcom.2019.02.124
    [21] Guo Y G, Wang Q H, Wang T M. Facile fabrication of superhydrophobic surface with micro/nanoscale binary structures on aluminum substrate. Appl Surf Sci, 2011, 257(13): 5831 doi: 10.1016/j.apsusc.2011.01.114
    [22] Li W, Zhang X, Yang J, et al. In situ growth of superhydrophobic and icephobic films with micro/nanoscale hierarchical structures on the aluminum substrate. J Colloid Interface Sci, 2013, 410: 165 doi: 10.1016/j.jcis.2013.07.063
    [23] Xu Z P, Lu G Q. Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3 LDH formation mechanism. Chem Mater, 2005, 17(5): 1055 doi: 10.1021/cm048085g
    [24] Iqbal M A, Fedel M. The effect of the surface morphologies on the corrosion resistance of in situ growth MgAl−LDH based conversion film on AA6082. Surf Coat Technol, 2018, 352: 166 doi: 10.1016/j.surfcoat.2018.08.006
    [25] Tedim J, Zheludkevich M L, Bastos A C, et al. Influence of preparation conditions of layered double hydroxide conversion films on corrosion protection. Electrochim Acta, 2014, 117: 164 doi: 10.1016/j.electacta.2013.11.111
    [26] Zhang Y, Liu J H, Li Y D, et al. A facile approach to superhydrophobic LiAl−layered double hydroxide film on Al−Li alloy substrate. J Coat Technol Res, 2015, 12(3): 595 doi: 10.1007/s11998-015-9660-9
    [27] Chen F, Yu P H, Zhang Y. Healing effects of LDHs nanoplatelets on MAO ceramic layer of aluminum alloy. J Alloys Compd, 2017, 711: 342 doi: 10.1016/j.jallcom.2017.04.016
    [28] Lü Z, Zhang F Z, Lei X D, et al. In situ growth of layered double hydroxide films on anodic aluminum oxide/aluminum and its catalytic feature in aldol condensation of acetone. Chem Eng Sci, 2008, 63(16): 4055 doi: 10.1016/j.ces.2008.05.007
    [29] Zhang Y, Li Y D, Ren Y S, et al. Double-doped LDH films on aluminum alloys for active protection. Mater Lett, 2017, 192: 33 doi: 10.1016/j.matlet.2017.01.038
    [30] Wang Y, Zhang D, Lu Z. Hydrophobic Mg−Al layered double hydroxide film on aluminum: Fabrication and microbiologically influenced corrosion resistance properties. Colloids Surf A, 2015, 474: 44 doi: 10.1016/j.colsurfa.2015.03.005
    [31] Wu J S, Peng D D, He Y T, et al. In-situ formation of decavanadate-intercalated layered double hydroxide films on AA2024 and their anti-corrosive properties when combined with hybrid sol gel films. Materials, 2017, 10(4): 426 doi: 10.3390/ma10040426
    [32] Kaseem M, Ko Y G. A novel composite system composed of zirconia and LDHs film grown on plasma electrolysis coating: Toward a stable smart coating. Ultrason Sonochem, 2018, 49: 316 doi: 10.1016/j.ultsonch.2018.08.023
    [33] Lv Y Z, Wang L F, Ma K B, et al. Fabrication of superhydrophobic films on aluminum foils with controllable morphologies. Adv Mater Res, 2013, 641-642: 414 doi: 10.4028/www.scientific.net/AMR.641-642.414
    [34] Iyi N, Matsumoto T, Kaneko Y, et al. Deintercalation of carbonate ions from a hydrotalcite-like compound: Enhanced decarbonation using acid-salt mixed solution. Chem Mater, 2004, 16(15): 2926 doi: 10.1021/cm049579g
    [35] Zhang T, Yu H Q, Zhou Y M, et al. In situ fabrication and infrared emissivity properties of oriented LDHs films on Al substrates. RSC Adv, 2015, 5(100): 82415 doi: 10.1039/C5RA15962H
    [36] Scarpellini D, Falconi C, Gaudio P, et al. Morphology of Zn/Al layered double hydroxide nanosheets grown onto aluminum thin films. Microelectron Eng, 2014, 126: 129 doi: 10.1016/j.mee.2014.07.007
    [37] Yarger M S, Steinmiller E M P, Choi K S. Electrochemical synthesis of Zn−Al layered double hydroxide (LDH) films. Inorg Chem, 2008, 47(13): 5859 doi: 10.1021/ic800193j
    [38] Scavetta E, Mignani A, Prandstraller D, et al. Electrosynthesis of thin films of Ni, Al hydrotalcite like compounds. Chem Mater, 2007, 19(18): 4523 doi: 10.1021/cm071132v
    [39] Zhang Y, Liu J H, Li Y D, et al. Enhancement of active anticorrosion via Ce-doped Zn−Al layered double hydroxides embedded in sol-gel coatings on aluminum alloy. J Wuhan Univ Technol Mater Sci Ed, 2017, 32(5): 1199 doi: 10.1007/s11595-017-1731-6
    [40] Liu J H, Zhang Y, Yu M, et al. Influence of embedded ZnAlCe− $\scriptstyle{\rm{NO}}^{-}_{3}$ layered double hydroxides on the anticorrosion properties of sol-gel coatings for aluminum alloy. Prog Org Coat, 2015, 81: 93 doi: 10.1016/j.porgcoat.2014.12.015
    [41] Shan D, Cosnier S, Mousty C. Layered double hydroxides: an attractive material for electrochemical biosensor design. Anal Chem, 2003, 75(15): 3872 doi: 10.1021/ac030030v
    [42] Barhoumi H, Maaref A, Rammah M, et al. Urea biosensor based on Zn3Al−Urease layered double hydroxides nanohybrid coated on insulated silicon structures. Mater Sci Eng C, 2006, 26(2-3): 328 doi: 10.1016/j.msec.2005.10.042
    [43] Indira L, Dixit M, Kamath P V. Electrosynthesis of layered double hydroxides of nickel with trivalent cations. J Power Sources, 1994, 52(1): 93 doi: 10.1016/0378-7753(94)01939-8
    [44] Roto R, Yamagishi A, Villemure G. Electrochemical quartz crystal microbalance study of mass transport in thin film of a redox active Ni−Al−Cl layered double hydroxide. J Electroanal Chem, 2004, 572(1): 101 doi: 10.1016/j.jelechem.2004.06.005
    [45] Zhang F Z, Sun M, Xu S L, et al. Fabrication of oriented layered double hydroxide films by spin coating and their use in corrosion protection. Chem Eng J, 2008, 141(1-3): 362 doi: 10.1016/j.cej.2008.03.016
    [46] De D, Sarkar D K. Superhydrophobic ZnAl double hydroxide nanostructures and ZnO films on Al and glass substrates. Mater Chem Phys, 2017, 185: 195 doi: 10.1016/j.matchemphys.2016.10.022
    [47] Chen H, Zhang F, Fu S, et al. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials. Adv Mater, 2006, 18(23): 3089 doi: 10.1002/adma.200600615
    [48] Yue C L, Chen H Y, Xu S L, et al. Controlled synthesis and investigation of the mechanism of formation of hollow hemispherical protrusions on laurate anion-intercalated Zn/Al layered double hydroxide hybrid films. J Colloid Interface Sci, 2012, 385(1): 268 doi: 10.1016/j.jcis.2012.06.008
    [49] Zhang Y, Yu P H, Wang J P, et al. LDHs/graphene film on aluminum alloys for active protection. Appl Surf Sci, 2018, 433: 927 doi: 10.1016/j.apsusc.2017.10.126
    [50] Li Y D, Li S M, Zhang Y, et al. Fabrication of superhydrophobic layered double hydroxides films with different metal cations on anodized aluminum 2198 alloy. Mater Lett, 2015, 142: 137 doi: 10.1016/j.matlet.2014.11.148
    [51] 刘丹, 宋影伟, 单大勇, 等. 镁合金自修复涂层研究进展. 表面技术, 2016, 45(12):28

    Liu D, Song Y W, Shan D Y, et al. Self-healing coatings form agnesium alloys: a review. Surf Technol, 2016, 45(12): 28
    [52] 潘梦秋, 王伦滔, 丁璇, 等. 自修复防腐涂层研究进展. 中国材料进展, 2018, 37(1):19

    Pan M Q, Wang L T, Ding X, et al. The research progress of self-healing anti-corrosion coatings. Mater China, 2018, 37(1): 19
    [53] Tedim J, Bastos A C, Kallip S, et al. Corrosion protection of AA2024−T3 by LDH conversion films. Analysis of SVET results. Electrochim Acta, 2016, 210: 215 doi: 10.1016/j.electacta.2016.05.134
    [54] Zhang Y, Liu J H, Li Y D, et al. Fabrication of inhibitor anion-intercalated layered double hydroxide host films on aluminum alloy 2024 and their anticorrosion properties. J Coat Technol Res, 2015, 12(2): 293 doi: 10.1007/s11998-014-9644-1
    [55] Li J, Lin K D, Luo X H, et al. Enhanced corrosion protection property of Li−Al layered double hydroxides (LDHs) film modified by 2-guanidinosuccinic acid with excellent self-repairing and self-antibacterial properties. Appl Surf Sci, 2019, 480: 384 doi: 10.1016/j.apsusc.2019.02.164
    [56] 于阳, 卢琳, 李晓刚. 微区电化学技术在薄液膜大气腐蚀中的应用. 工程科学学报, 2018, 40(6):649

    Yu Y, Lu L, Li X G. Application of micro-electrochemical technologies in atmospheric corrosion of thin electrolyte layer. Chin J Eng, 2018, 40(6): 649
  • 加载中
图(11)
计量
  • 文章访问数:  1134
  • HTML全文浏览量:  1281
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-28
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回