• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声对熔盐电解法制备Al-7Si-Sc合金组织的影响

郭志超 刘轩 薛济来 张鹏举

郭志超, 刘轩, 薛济来, 张鹏举. 超声对熔盐电解法制备Al-7Si-Sc合金组织的影响[J]. 工程科学学报, 2019, 41(9): 1135-1141. doi: 10.13374/j.issn2095-9389.2019.09.004
引用本文: 郭志超, 刘轩, 薛济来, 张鹏举. 超声对熔盐电解法制备Al-7Si-Sc合金组织的影响[J]. 工程科学学报, 2019, 41(9): 1135-1141. doi: 10.13374/j.issn2095-9389.2019.09.004
GUO Zhi-chao, LIU Xuan, XUE Ji-lai, ZHANG Peng-ju. Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis[J]. Chinese Journal of Engineering, 2019, 41(9): 1135-1141. doi: 10.13374/j.issn2095-9389.2019.09.004
Citation: GUO Zhi-chao, LIU Xuan, XUE Ji-lai, ZHANG Peng-ju. Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis[J]. Chinese Journal of Engineering, 2019, 41(9): 1135-1141. doi: 10.13374/j.issn2095-9389.2019.09.004

超声对熔盐电解法制备Al-7Si-Sc合金组织的影响

doi: 10.13374/j.issn2095-9389.2019.09.004
基金项目: 

国家自然科学基金资助项目(51434005,51704020,51874035);北京市自然科学基金资助项目(2184110)

详细信息
  • 中图分类号: TS912+.3

Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis

  • 摘要: Al-Si系合金在现代工业、交通等领域广泛应用,合金元素钪可进一步改善其加工和使用性能.采用超声协同熔盐电解法制备Al-7S-Sc三元合金,研究探索超声作用对合金组织及强化相分布的影响.发现超声协同熔盐电解制得合金中Sc含量提高,团簇共晶硅组织和AlSi2Sc2相显著细化,共晶硅团簇尺寸由约500降低至200 μm,减小约60%,细化后AlSi2Sc2相分布均匀.超声协同电解法可显著优化Al-7Si-Sc合金组织,有助于控制改善现行工艺中合金元素偏聚、组织不均匀现象.
  • [5] Chanyathunyaroj K, Patakham U, Kou S, et al. Microstructural evolution of iron-rich intermetallic compounds in scandium modified Al-7Si-0.3Mg alloys. J Alloys Compd, 2017, 692:865
    [6] Muhammad A, Xu C, W X J, et al. High strength aluminum cast alloy:A Sc modification of a standard Al-Si-Mg cast alloy. Mater Sci Eng A, 2014, 604:122
    [7] Prukkanon W, Srisukhumbowornchai N, Limmaneevichitr C. Modification of hypoeutectic Al-Si alloys with scandium. J Alloys Compd, 2009, 477(1-2):454
    [8] Patakham U, Kajornchaiyakul J, Limmaneevichitr C. Modification mechanism of eutectic silicon in Al-6Si-0.3Mg alloy with scandium. J Alloys Compd, 2013, 575:273
    [9] Riva S, Yusenko K V, Lavery N P, et al. The scandium effect in multicomponent alloys. Int Mater Rev, 2016, 61(3):203
    [10] Qian Y, Xue J L, Wang Z J, et al. Mechanical properties evaluation of Zr addition in L12-Al3 (Sc1-xZrx) using first-principles calculation. JOM, 2016, 68(5):1293
    [11] Belov N A, Naumova E A, Alabin A N, et al. Effect of scandium on structure and hardening of Al-Ca eutectic alloys. J Alloys Compd, 2015, 646:741
    [12] Patakham U, Kajornchaiyakul J, Limmaneevichitr C. Grain refinement mechanism in an Al-Si-Mg alloy with scandium. J Alloys Compd, 2012, 542:177
    [13] Liu X, Guo Z C, Xue J L, et al. Effects of synergetic ultrasound on the Sc yield and primary Al3Sc in the Al-Sc alloy prepared by the molten salts electrolysis. Ultrason Sonochem, 2019, 52:33
    [17] Harata M, Yasuda K, Yakushiji H, et al. Electrochemical production of Al-Sc alloy in CaCl2-Sc2O3 molten salt. J Alloys Compd, 2009, 474(1-2):124
    [18] Royset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev, 2005, 50(1):19
    [21] Zhang L, Eskin D G, Katgerman L. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys. J Mater Sci, 2011, 46(15):5252
    [22] Eskin G I, Eskin D G. Effects of ultrasonic (cavitation) melt processing on the structure refinement and property improvement of cast and worked aluminum alloys. Mater Sci Forum, 2002, 396-402:77
    [24] Lin C, Wu S S, Lu S L, et al. Microstructure and mechanical properties of rheo-diecast hypereutectic Al-Si alloy with 2%Fe assisted with ultrasonic vibration process. J Alloys Compd, 2013, 568:42
    [25] Eskin G I, Eskin D G. Some control mechanisms of spatial solidification in light alloys. Z Metallkd, 2004, 95(8):682
    [26] Eskin G I. Improvement of the structure and properties of ingots and worked aluminum alloy semifinished products by melt ultrasonic treatment in a cavitation regime. Metallurgist, 2010, 54(7-8):505
    [32] Murray J L, McAlister A J. The Al-Si (aluminum-silicon) system. Bull Alloy Phase Diagrams, 1984, 5(1):74
    [33] Yang J, Zhang J, Dai Y B, et al. The migration behavior of the fourth period transition metals in liquid Al:an ab initio molecular dynamics study. Comput Mater Sci, 2017, 130:183
    [35] Eskin D G. Ultrasonic processing of molten and solidifying aluminium alloys:overview and outlook. Mater Sci Technol, 2017, 33(6):636
    [36] Lauterborn W, Ohl C D. Cavitation bubble dynamics. Ultrason Sonochem, 1997, 4(2):65
    [37] Eskin G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason Sonochem, 2001, 8(3):319
    [38] Liu X, Xue J L, Guo Z C, et al. Segregation behaviors of Sc and unique primary Al3Sc in Al-Sc alloys prepared by molten salt electrolysis. J Mater Sci Technol, 2019, 35(7):1422
    [39] Zhang W D, Liu Y, Yang J, et al. Effects of Sc content on the microstructure of as-cast Al-7wt.% Si alloys. Mater Charact, 2012, 66:104
    [40] Zhang Z T, Li J, Yue H Y, et al. Microstructure evolution of A356 alloy under compound field. J Alloys Compd, 2009, 484(1-2):458
    [42] Zhang F, Qin A N, Liu S H, et al. Phase equilibria and solidification characteristics of the Al-Sc-Si alloys. J Mater Sci, 2016, 51(3):1644
    [43] Pandee P, Gourlay C M, Belyakov S A, et al. AlSi2Sc2 intermetallic formation in Al-7Si-0.3Mg-xSc alloys and their effects on as-cast properties. J Alloys Compd, 2018, 731:1159
    [44] Okamoto H. Supplemental literature review of binary phase diagrams:Ag-Ni, Al-Cu, Al-Sc, C-Cr, Cr-Ir, Cu-Sc, Eu-Pb, H-V, Hf-Sn, Lu-Pb, Sb-Yb, and Sn-Y. J Phase Equilib Diffus, 2013, 34(6):493
  • 加载中
计量
  • 文章访问数:  508
  • HTML全文浏览量:  167
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-29

目录

    /

    返回文章
    返回