• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有状态约束与输入饱和的全向移动机器人自适应跟踪控制

郑文昊 贾英民

郑文昊, 贾英民. 具有状态约束与输入饱和的全向移动机器人自适应跟踪控制[J]. 工程科学学报, 2019, 41(9): 1176-1186. doi: 10.13374/j.issn2095-9389.2019.09.009
引用本文: 郑文昊, 贾英民. 具有状态约束与输入饱和的全向移动机器人自适应跟踪控制[J]. 工程科学学报, 2019, 41(9): 1176-1186. doi: 10.13374/j.issn2095-9389.2019.09.009
ZHENG Wen-hao, JIA Ying-min. Adaptive tracking control for omnidirectional mobile robots with full-state constraints and input saturation[J]. Chinese Journal of Engineering, 2019, 41(9): 1176-1186. doi: 10.13374/j.issn2095-9389.2019.09.009
Citation: ZHENG Wen-hao, JIA Ying-min. Adaptive tracking control for omnidirectional mobile robots with full-state constraints and input saturation[J]. Chinese Journal of Engineering, 2019, 41(9): 1176-1186. doi: 10.13374/j.issn2095-9389.2019.09.009

具有状态约束与输入饱和的全向移动机器人自适应跟踪控制

doi: 10.13374/j.issn2095-9389.2019.09.009
基金项目: 

国家自然科学基金资助项目(61327807,61521091,61520106010,61134005);国家重点基础研究发展规划资助项目(2012CB821200,2012CB821201)

详细信息
  • 中图分类号: TP242.6

Adaptive tracking control for omnidirectional mobile robots with full-state constraints and input saturation

  • 摘要: 研究了全状态约束与输入饱和情况下的全向移动机器人轨迹跟踪控制问题.首先,针对一类三轮驱动的全向移动机器人,考虑系统存在模型参数不确定与外部扰动,建立了运动学与动力学模型;其次,利用障碍Lyapunov函数,结合反步设计方法,有效处理全向移动机器人跟踪过程中存在的状态约束,保证所有状态变量不会超出状态约束的限制区域;然后,针对系统参数不确定和未知有界扰动,设计相应的自适应律进行处理;同时,提出一种抗饱和补偿器保证机器人输入力矩满足饱和约束;并且利用Lyapunov理论分析证明了当选取合适的控制参数时闭环系统中的所有信号均能保证一致有界;最后,通过与未考虑状态约束和输入饱和的控制器以及经典比例-微分控制器进行仿真对比,验证了该方法的有效性和鲁棒性.
  • [1] Kramer J, Scheutz M. Development environments for autonomous mobile robots:a survey. Auton Robot, 2007, 22(2):101
    [2] Watanabe K, Shiraishi Y, Tzafestas S G, et al. Feedback control of an omnidirectional autonomous platform for mobile service robots. J Intell Rob Syst, 1998, 22(3-4):315
    [3] Al Mamun M A, Nasir M T, Khayyat A. Embedded system for motion control of an omnidirectional mobile robot. IEEE Access, 2018, 6:6722
    [4] Kalmár-Nagy T, D'Andrea R, Ganguly P. Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle. Robot Auton Syst, 2004, 46(1):47
    [5] Purwin O, D'Andrea R. Trajectory generation and control for four wheeled omnidirectional vehicles. Robot Auton Syst, 2006, 54(1):13
    [6] Liu Y, Zhu J J, Williams Ⅱ R L, et al. Omni-directional mobile robot controller based on trajectory linearization. Robot Auton Syst, 2008, 56(5):461
    [7] Indiveri G. Swedish wheeled omnidirectional mobile robots:kinematics analysis and control. IEEE Trans Rob, 2009, 25(1):164
    [8] Hashemi E, Jadidi M G, Jadidi N G. Model-based PI-fuzzy control of four-wheeled omni-directional mobile robots. Robot Auton Syst, 2011, 59(11):930
    [9] Huang H C, Tsai C C. Adaptive trajectory tracking and stabilization for omnidirectional mobile robot with dynamic effect and uncertainties. IFAC Proc Vol, 2008, 41(2):5383
    [11] Alakshendra V, Chiddarwar S S. Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn, 2017, 87(4):2147
    [12] Xu D, Zhao D B, Yi J Q, et al. Trajectory tracking control of omnidirectional wheeled mobile manipulators:robust neural network-based sliding mode approach. IEEE Trans Syst Man Cybern Part B Cybern, 2009, 39(3):788
    [14] Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45(4):918
    [15] Liu Y J, Li D J, Tong S C. Adaptive output feedback control for a class of nonlinear systems with full-state constraints. Int J Control, 2014, 87(2):281
    [16] Liu Y J, Tong S C. Barrier Lyapunov Functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica, 2016, 64:70
    [17] Bai R. Neural network control-based adaptive design for a class of DC motor systems with the full state constraints. Neurocomputing, 2015, 168:65
    [18] Meng W C, Yang Q M, Sun Y X. Adaptive neural control of nonlinear MIMO systems with time-varying output constraints. IEEE Trans Neural Networks Learn Syst, 2015, 26(5):1074
    [19] Ding L, Li S, Liu Y J, et al. Adaptive neural network-based tracking control for full-state constrained wheeled mobile robotic system. IEEE Trans Syst Man Cybern Syst, 2017, 47(8):2410
    [20] Wang C X, Wu Y Q. Finite-time tracking control for strict-feedback nonlinear systems with full state constraints. Int J Control, 2017, 46(7):1
    [21] Chen X H, Jia Y M, Matsuno F. Tracking control for differential-drive mobile robots with diamond-shaped input constraints. IEEE Trans Control Syst Technol, 2014, 22(5):1999
    [22] Liu C X, Gao J, Xu D M. Lyapunov-based model predictive control for tracking of nonholonomic mobile robots under input constraints. Int J Control Autom Syst, 2017, 15(5):2313
    [23] Chen M, Ge S S, Ren B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 2011, 47(3):452
    [24] Wen C Y, Zhou J, Liu Z T, et al. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans Autom Control, 2011, 56(7):1672
    [25] Khalil H K. Nonlinear Systems. 3rd Ed. London:Prentice Hall Inc, 2002
  • 加载中
计量
  • 文章访问数:  516
  • HTML全文浏览量:  154
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-11

目录

    /

    返回文章
    返回