• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高炉内铁−焦界面的渗碳润湿行为研究

湛文龙 朱浩斌 何志军 孙崇 余盈昌 庞清海 张军红

湛文龙, 朱浩斌, 何志军, 孙崇, 余盈昌, 庞清海, 张军红. 高炉内铁−焦界面的渗碳润湿行为研究[J]. 工程科学学报, 2020, 42(5): 595-601. doi: 10.13374/j.issn2095-9389.2019.09.18.003
引用本文: 湛文龙, 朱浩斌, 何志军, 孙崇, 余盈昌, 庞清海, 张军红. 高炉内铁−焦界面的渗碳润湿行为研究[J]. 工程科学学报, 2020, 42(5): 595-601. doi: 10.13374/j.issn2095-9389.2019.09.18.003
ZHAN Wen-long, ZHU Hao-bin, HE Zhi-jun, SUN Chong, YU Ying-chang, PANG Qing-hai, ZHANG Jun-hong. Interface wetting behavior between iron and coke during the carbon dissolution process in a blast furnace[J]. Chinese Journal of Engineering, 2020, 42(5): 595-601. doi: 10.13374/j.issn2095-9389.2019.09.18.003
Citation: ZHAN Wen-long, ZHU Hao-bin, HE Zhi-jun, SUN Chong, YU Ying-chang, PANG Qing-hai, ZHANG Jun-hong. Interface wetting behavior between iron and coke during the carbon dissolution process in a blast furnace[J]. Chinese Journal of Engineering, 2020, 42(5): 595-601. doi: 10.13374/j.issn2095-9389.2019.09.18.003

高炉内铁−焦界面的渗碳润湿行为研究

doi: 10.13374/j.issn2095-9389.2019.09.18.003
基金项目: 国家自然科学基金资助项目(51604148,51874171,51974154);辽宁科技大学优秀人才资助项目(2019RC11)
详细信息
    通讯作者:

    E-mail:hzhj2002@126.com

  • 中图分类号: TF526.1

Interface wetting behavior between iron and coke during the carbon dissolution process in a blast furnace

More Information
  • 摘要: 高炉内铁水渗碳过程是影响冶炼效率及未饱和铁水对炉缸炉衬侵蚀的重要因素。本文通过高温真空润湿性测试装置模拟了高炉炉缸区的铁水渗碳反应,分析了不同碳质量分数(3.8%、4.3%、4.8%)的Fe−C熔体与质量分数为99.9%的石墨基体在高温下界面间的润湿反应,同时利用扫描电镜(SEM)和能谱仪(EDS)研究了渗碳界面的微观形貌及渗碳距离。结果表明:界面接触角随着Fe−C熔体中碳含量的增加而变大;熔化过程中,接触角随着反应时间延长而减小,并最终趋于稳定;4.8%碳质量分数的Fe−C熔体中由于含碳量已至饱和,处于不润湿状态。扫描电镜分析显示,Fe−C熔体与石墨基体的接触界面形成了“球帽状”凹陷,凹陷半径与体积随碳含量的增加而减小。能谱线扫描分析显示,随着Fe−C熔体中初始碳含量的增加,石墨基体中的碳素溶解量减少,渗碳效果变差,良好的润湿性有利于碳的传质。通过计算表面能发现,石墨基体中碳素溶解进入Fe−C熔体后,有效减小了两者之间的表面能,使得表面张力减小,接触角在熔化期间递减。
  • 图  1  超高温真空润湿性测试系统

    Figure  1.  Ultra-high temperature vacuum wetting test system

    图  2  Fe−3.8%C熔体的渗碳过程。(a)1100 ℃;(b)1200 ℃;(c)1300 ℃;(d)1400 ℃

    Figure  2.  Carburization process of Fe−C sample with 3.8% carbon content: (a) 1100 ℃; (b) 1200 ℃; (c) 1300 ℃; (d) 1400 ℃

    图  3  Fe−4.3%C熔体的渗碳过程。(a)1100 ℃;(b)1200 ℃;(c)1300 ℃;(d)1400 ℃

    Figure  3.  Carburization process of Fe−C sample with 4.3% carbon content: (a) 1100 ℃; (b) 1200 ℃; (c) 1300 ℃; (d) 1400 ℃

    图  4  Fe−4.8%C熔体的渗碳过程。(a)1100 ℃;(b)1200 ℃;(c)1300 ℃;(d)1400 ℃

    Figure  4.  Carburization process of Fe−C sample with 4.8% carbon content: (a) 1100 ℃; (b) 1200 ℃; (c) 1300 ℃; (d) 1400 ℃

    图  5  Fe−C熔体接触角在升温过程中的变化规律

    Figure  5.  Variation of contact angle of Fe−C sample with temperature rising

    图  6  切割前后的Fe−C熔体形状。(a) 切割前;(b) 切割后

    Figure  6.  Fe−C sample shape before and after cutting: (a) before cutting; (b) after cutting

    图  7  扫描电镜下不同Fe−C熔体的微观形貌。(a) Fe−3.8%C 熔体;(b) Fe−4.3%C 熔体;(c) Fe−4.8%C熔体

    Figure  7.  Morphology of different Fe−C samples using SEM: (a) Fe−3.8%C melt; (b) Fe−4.3%C melt (c) Fe−4.8%C melt

    图  8  球帽形状示意图

    Figure  8.  Spherical cap shape

    图  9  能谱线扫描的元素分析结果。(a) Fe−3.8%C 熔体;(b) Fe−4.3%C熔体;(c) Fe−4.8%C 熔体

    Figure  9.  Element analysis results by EDS line scan: (a) Fe−3.8%C melt; (b) Fe−4.3%C melt; (c) Fe−4.8%C melt

    表  1  球帽尺寸计算结果

    Table  1.   Calculation results of spherical cap size

    Mass fraction of initial carbon/%R/mmH/μmV/mm3
    3.82.270338.72.76
    4.32.193311.12.36
    4.82.040223.31.46
    下载: 导出CSV

    表  2  Fe−C熔体与石墨基体的初始接触角及表面能

    Table  2.   Initial contact angle and surface energy of Fe−C melts and graphite substrate

    Mass fraction of initial carbon/%Initial contact angle/
    (°)
    Surface energy/
    (J·m−2)
    3.8118.31.336
    4.3122.71.386
    4.8129.91.463
    下载: 导出CSV
  • [1] Chang Z Y, Wang P, Zhang J L, et al. Effect of CO2 and H2O on gasification dissolution and deep reaction of coke. Int J Miner Metall Mater, 2018, 25(12): 1402 doi: 10.1007/s12613-018-1694-4
    [2] 王筱留. 钢铁冶金学(炼铁部分). 3版. 北京: 冶金工业出版社, 2013

    Wang X L. Metallurgy of Iron and Steel (Ironmaking). 3rd Ed. Beijing: Metallurgical Industry Press, 2013
    [3] 郭文涛, 薛庆国, 凌超, 等. 孔隙结构特征对焦炭高温抗拉强度的影响. 工程科学学报, 2016, 38(7):930

    Guo W T, Xue Q G, Ling C, et al. Influence of pore structure features on the high temperature tensile strength of coke. Chin J Eng, 2016, 38(7): 930
    [4] Natsui S, Kikuchi T, Suzuki R O, et al. Characterization of liquid trickle flow in poor-wetting packed bed. ISIJ Int, 2015, 55(6): 1259 doi: 10.2355/isijinternational.55.1259
    [5] Ichikawa K, Kashihara Y, Oyama N, et al. Evaluating effect of coke layer thickness on permeability by pressure drop estimation model. ISIJ Int, 2017, 57(2): 254 doi: 10.2355/isijinternational.ISIJINT-2016-459
    [6] Geleta D D, Lee J. Effects of particle diameter and coke layer thickness on solid flow and stress distribution in BF by 3D discrete element method. Metall Mater Trans B, 2018, 49(6): 3594 doi: 10.1007/s11663-018-1368-7
    [7] Sun M M, Zhang J L, Li K J, et al. Dissolution behaviors of various carbonaceous materials in liquid iron: interaction between graphite and iron. JOM, 2019, 71(12): 4305 doi: 10.1007/s11837-019-03664-9
    [8] Mansuri I A, Khanna R, Rajarao R, et al. Recycling waste CDs as a carbon resource: dissolution of carbon into molten iron at 1550 ℃. ISIJ Int, 2013, 53(12): 2259 doi: 10.2355/isijinternational.53.2259
    [9] Zhang Z J, Zhang J L, Jiao K X, et al. Research progress of iron carburization in blast furnace//6th International Symposium on High–Temperature Metallurgical Processing, Orlando, 2015: 627
    [10] 华福波, 张伟, 朱雷, 等. 焦炭床内铁水渗碳行为. 钢铁研究学报, 2019, 31(7):612

    Hua F B, Zhang W, Zhu L, et al. Carburizing behavior of molten iron in coke bed. J Iron Steel Res, 2019, 31(7): 612
    [11] 华福波, 张伟, 薛正良, 等. 焦炭在铁水中溶解的动力学实验. 钢铁研究学报, 2018, 30(6):427

    Hua F B. Zhang W, Xue Z L, et al. Kinetic experiment of dissolving coke in molten iron. J Iron Steel Res, 2018, 30(6): 427
    [12] Deng Y, Zhang J L, Jiao K X. Economical and efficient protection for blast furnace hearth. ISIJ Int, 2018, 58(7): 1198 doi: 10.2355/isijinternational.ISIJINT-2018-005
    [13] Nguyen C S, Ohno K, Maeda T, et al. Effect of carbon dissolution reaction on wetting behaviour of molten Fe−C alloy on graphite substrate in the initial contact period. ISIJ Int, 2017, 57(9): 1491 doi: 10.2355/isijinternational.ISIJINT-2017-054
    [14] Tang K, Lü X W, Wu S S, et al. Measurement for contact angle of iron ore particles and water. ISIJ Int, 2018, 58(3): 379 doi: 10.2355/isijinternational.ISIJINT-2017-424
    [15] 程礼梅, 张立峰, 沈平. 钢铁冶金过程中的界面润湿性的基础. 工程科学学报, 2018, 40(12):1434

    Cheng L M, Zhang L F, Shen P. Fundamentals of interfacial wettability in ironmaking and steelmaking. Chin J Eng, 2018, 40(12): 1434
    [16] Frenznick S, Swaminathan S, Stratmann M, et al. A novel approach to determine high temperature wettability and interfacial reactions in liquid metal/solid interface. J Mater Sci, 2010, 45(8): 2106 doi: 10.1007/s10853-009-4147-7
    [17] Tandjaoui A, Cherif M, Carroz L, et al. Investigation of liquid oxide interactions with refractory substrates via sessile drop method. J Mater Sci, 2016, 51(4): 1701 doi: 10.1007/s10853-015-9504-0
    [18] Mao W J, Noji T, Teshima K, et al. Wettability of molten aluminum-silicon alloys on graphite and surface tension of those alloys at 1273 K (1000 ℃). Metall Mater Trans A, 2016, 47(6): 3201 doi: 10.1007/s11661-016-3460-4
    [19] 尹东霞, 马沛生, 夏淑倩. 液体表面张力测定方法的研究进展. 科技通报, 2007, 23(3):424 doi: 10.3969/j.issn.1001-7119.2007.03.025

    Yin D X, Ma P S, Xia S Q. Progress on methods for measuring surface tension of liquids. Bull Sci Technol, 2007, 23(3): 424 doi: 10.3969/j.issn.1001-7119.2007.03.025
    [20] Eustathopoulos N, Nicholas M G, Drevet B. Wettability at High Temperatures. Oxford: Pergamon Press, 1999
    [21] Lee J, Morita K. Dynamic interfacial phenomena between gas, liquid iron and solid CaO during desulfurization. ISIJ Int, 2004, 44(2): 235 doi: 10.2355/isijinternational.44.235
    [22] Makkonen L. Young’s equation revisited. J. Phys Condens Matter, 2016, 28(13): 135001 doi: 10.1088/0953-8984/28/13/135001
    [23] 刘永明, 施建宇, 鹿芹芹, 等. 基于杨氏方程的固体表面能计算研究进展. 材料导报, 2013, 27(6):123 doi: 10.3969/j.issn.1005-023X.2013.06.032

    Liu Y M, Shi J Y, Lu Q Q, et al. Research progress on calculation of solid surface tension based on Young's equation. Mater Rep, 2013, 27(6): 123 doi: 10.3969/j.issn.1005-023X.2013.06.032
    [24] Shinozaki N, Satoh N, Shinozaki H, et al. Measurement of interfacial free energy between carbon saturated molten iron and graphite based on the sign rule. J Jpn Inst Met, 2006, 70(12): 950 doi: 10.2320/jinstmet.70.950
    [25] Nguyen C S, Ohno K, Maeda T, et al. Role of Al2O3 in interfacial morphology and reactive wetting behaviour between carbon-unsaturated liquid iron and simulant coke substrate. ISIJ Int, 2016, 56(8): 1325 doi: 10.2355/isijinternational.ISIJINT-2015-739
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  2122
  • HTML全文浏览量:  675
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回