• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu–(Fe–C)合金中Fe–C相的固态转变对其摩擦磨损行为及机理的影响

任浩岩 解国良 刘新华

任浩岩, 解国良, 刘新华. Cu–(Fe–C)合金中Fe–C相的固态转变对其摩擦磨损行为及机理的影响[J]. 工程科学学报, 2020, 42(9): 1190-1199. doi: 10.13374/j.issn2095-9389.2019.09.18.006
引用本文: 任浩岩, 解国良, 刘新华. Cu–(Fe–C)合金中Fe–C相的固态转变对其摩擦磨损行为及机理的影响[J]. 工程科学学报, 2020, 42(9): 1190-1199. doi: 10.13374/j.issn2095-9389.2019.09.18.006
REN Hao-yan, XIE Guo-liang, LIU Xin-hua. Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and mechanism of Cu–(Fe–C) alloys[J]. Chinese Journal of Engineering, 2020, 42(9): 1190-1199. doi: 10.13374/j.issn2095-9389.2019.09.18.006
Citation: REN Hao-yan, XIE Guo-liang, LIU Xin-hua. Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and mechanism of Cu–(Fe–C) alloys[J]. Chinese Journal of Engineering, 2020, 42(9): 1190-1199. doi: 10.13374/j.issn2095-9389.2019.09.18.006

Cu–(Fe–C)合金中Fe–C相的固态转变对其摩擦磨损行为及机理的影响

doi: 10.13374/j.issn2095-9389.2019.09.18.006
基金项目: 十三五国家重点研发计划项目资助课题(2016YFB0301404)
详细信息
    通讯作者:

    E-mail:liuxinhua@ustb.edu.cn

  • 中图分类号: TG146.11

Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and mechanism of Cu–(Fe–C) alloys

More Information
  • 摘要: 采用光学显微镜(OM)、扫描电子显微镜(SEM)、纳米力学探针、力学性能测试以及室温摩擦磨损实验研究了Cu–(Fe–C)合金的铸态组织、形变态组织、Fe–C相形貌、力学性能和摩擦磨损行为。结果表明,Cu–(Fe–C)合金中弥散分布着微米级和纳米级的Fe–C相,其中微米级的Fe–C相在淬火和回火过程中发生了固态转变,这种固态转变与钢中的马氏体转变和回火转变类似。合金先在850 ℃淬火,然后在200、400和650 ℃回火,Fe–C相由针状马氏体逐渐向颗粒状回火索氏体转变,Fe–C相纳米硬度分别为9.4、8、4.2和3.8 GPa,实现了对强化相硬度的控制。室温摩擦磨损实验结果表明,随着回火温度升高,合金的磨损机制逐渐由犁削向黏着磨损和大塑性变形转变,导致合金的耐磨损性能降低。这一结论可以为通过Fe–C相的固态转变的方法调控Cu–(Fe–C)合金的摩擦磨损性能提供参考作用。
  • 图  1  Cu–Fe–C合金的铸态组织。(a)低倍光学显微镜照片;(b)高倍光学显微镜照片;(c)晶粒细化后的组织;(d)SEM图像

    Figure  1.  As-cast structure of Cu–Fe–C alloy: (a) low power optical microscope photos; (b) high power optical microscope photos; (c) grain refined structure; (d) SEM image

    图  2  Cu–(Fe–C)合金热处理后的SEM像。(a)淬火态;(b) 200 ℃回火态;(c) 400 ℃回火态;(d) 650 ℃回火态

    Figure  2.  SEM image of Cu–(Fe–C) alloy after heat treatment:(a) quenched;(b) tempered at 200 ℃;(c) tempered at 400 ℃;(d) tempered at 650 ℃

    图  3  淬火态Cu–(Fe–C)合金DSC测试结果

    Figure  3.  DSC test result of quenched Cu–(Fe–C) alloy

    图  4  不同回火温度下Cu–Fe–C合金的抗拉强度和硬度

    Figure  4.  Tensile strength and hardness of Cu–Fe–C alloy at different tempering temperatures

    图  5  不同回火温度下Fe–C相的纳米硬度

    Figure  5.  Nano-hardness of Fe–C phase at different tempering temperatures

    图  6  不同状态Cu–Fe–C合金拉伸断口形貌。(a)淬火态;(b) 200 ℃回火态;(c) 400 ℃回火态;(d) 650 ℃回火态

    Figure  6.  Tensile fracture morphology of Cu–Fe–C alloys in different states:(a) quenched;(b) tempered at 200 ℃;(c) tempered at 400 ℃;(d) tempered at 650 ℃

    图  7  不同状态Cu–(Fe–C)合金拉伸断口纵截面形貌。(a)淬火态;(b)200 ℃回火态;(c)400 ℃回火态;(d)650 ℃回火态

    Figure  7.  Longitudinal section morphology of tensile fracture of Cu–Fe–C alloys in different states: (a) quenched; (b) tempered at 200 ℃; (c) tempered at 400 ℃; (d) tempered at 650 ℃

    图  8  Cu–Fe–C合金和纯Cu的磨损率

    Figure  8.  Wear rate of Cu–Fe–C alloy and pure cooper

    图  9  摩擦表面的磨痕三维形貌照片(a)、(b)和纵截面的深度轮廓曲线(c)、(d)。(a)、(c)淬火态;(b)、(d)650 ℃回火态

    Figure  9.  3-D morphology of friction surface (a) & (b) and profile of longitudinal section (c) & (d). (a), (c) quenched; (b), (d) tempered at 650 ℃

    图  10  不同状态合金摩擦表面形貌。(a)淬火态;(b) 200 ℃回火态;(c) 400 ℃回火态;(d) 650 ℃回火态

    Figure  10.  Friction surface morphology of alloys in different states: (a) quenched; (b) tempered at 200 ℃; (c) tempered at 400 ℃; (d) tempered at 650 ℃

    图  11  不同状态合金塑性变形层深度。(a)淬火态;(b) 200 ℃回火态;(c) 400 ℃回火态;(d) 650 ℃回火态

    Figure  11.  Depth of plastic deformation layer of alloys in different states: (a) quenched; (b) tempered at 200 ℃; (c) tempered at 400 ℃; (d) tempered at 650 ℃

    图  12  不同状态合金加工硬化层深度。(a)淬火态;(b)200 ℃回火态;(c)400 ℃回火态;(d) 650 ℃回火态

    Figure  12.  Depth of work hardening layer of alloys in different states: (a) quenched; (b) tempered at 200 ℃; (c) tempered at 400 ℃; (d) tempered at 650 ℃

    表  1  图1(d)中1,2,3点的EDS结果

    Table  1.   EDS results of Points 1,2,3 in Fig. 1(d)

    PointElementAtomic fraction/%Mass fraction/%
    1 C 73.67 36.13
    Fe 14.43 32.90
    Cu 11.84 30.72
    2 C 17.59 4.17
    Fe 53.56 59.31
    Cu 28.86 36.52
    3 C 10.59 2.45
    Fe 80.65 86.82
    Cu 8.76 10.73
    下载: 导出CSV
  • [1] 任剑, 崔功军, 鲁张祥. Cu–Fe基摩擦片摩擦磨损性能的实验研究. 科学技术与工程, 2017, 17(30):223

    Ren J, Cui G J, Lu Z X. Experimental study on tribological characteristics of friction plate for belt conveyor. <italic>Sci Technol Eng</italic>, 2017, 17(30): 223
    [2] 李雨蔚, 肖来荣, 章玮, 等. 不同Mn含量的铝青铜合金组织与性能. 稀有金属, 2017, 41(9):985

    Li Y W, Xiao L R, Zhang W, et al. Microstructure and mechanical properties of aluminum bronze with different Mn contents. <italic>Chin J Rare Met</italic>, 2017, 41(9): 985
    [3] 蒋娅琳, 朱和国. 铜基复合材料的摩擦磨损性能研究现状. 材料导报, 2014, 28(3):33

    Jiang Y L, Zhu H G. Research status of friction and wear properties of copper matrix composites. <italic>Mater Rep</italic>, 2014, 28(3): 33
    [4] Österle W, Prietzel C, Kloß H, et al. On the role of copper in brake friction materials. <italic>Tribol Int</italic>, 2010, 43(12): 2317 doi: 10.1016/j.triboint.2010.08.005
    [5] 何波, 王晨, 雷涛, 等. 激光沉积TC4/TC11梯度复合结构各梯度层性能研究. 稀有金属, 2014, 38(6):1

    He B, Wang C, Lei T, et al. Study on properties of gradient layers of laser deposited TC4/TC11 gradient composite structure. <italic>Chin J Rare Met</italic>, 2014, 38(6): 1
    [6] 魏燕, 王伟, 张雁南, 等. 表面喷丸与Fe<sup>+</sup>注入协同增强Ti13Nb13Zr合金的生物摩擦学性能. 稀有金属, 2020, 44(1):48

    Wei Y, Wang W, Zhang Y N, et al. Synergistic enhancement of bio-tribological properties of Ti13Nb13Zr alloy by surface shot peening and Fe<sup>+</sup> implantation. <italic>Chin J Rare Met</italic>, 2020, 44(1): 48
    [7] He D H, Manory R. A novel electrical contact material with improved self-lubrication for railway current collectors. <italic>Wear</italic>, 2001, 249(7): 626 doi: 10.1016/S0043-1648(01)00700-1
    [8] Xiao Y L, Zhang Z Y, Yao P P, et al. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. <italic>Tribol Int</italic>, 2018, 119: 585 doi: 10.1016/j.triboint.2017.11.038
    [9] Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders. <italic>Wear</italic>, 2002, 253(7-8): 699 doi: 10.1016/S0043-1648(02)00038-8
    [10] Senouci A, Frene J, Zaidi H. Wear mechanism in graphite–copper electrical sliding contact. <italic>Wear</italic>, 1999, 225-229: 949 doi: 10.1016/S0043-1648(98)00412-8
    [11] Zhou H B, Yao P P, Xiao Y L, et al. Friction and wear maps of copper metal matrix composites with different iron volume content. <italic>Tribol Int</italic>, 2019, 132: 199 doi: 10.1016/j.triboint.2018.11.027
    [12] 张敏, 王刚, 张立胜, 等.40Cr钢表面激光熔覆Fe、Ni基涂层组织性能研究.稀有金属, http://kns.cnki.net/kcms/detail/11.2111.TF.20191211.0955.001.html

    Zhang M, Wang G, Zhang L S, et al. Microstructure and properties of laser cladding Fe, Ni-based coatings on 40Cr surface. Chin J Rare Met, http://kns.cnki.net/kcms/detail/11.2111.TF.20191211.0955.001.html
    [13] Xiong X, Chen J, Yao P P, et al. Friction and wear behaviors and mechanisms of Fe and SiO<sub>2</sub> in Cu-based P/M friction materials. <italic>Wear</italic>, 2007, 262(9-10): 1182 doi: 10.1016/j.wear.2006.11.001
    [14] Liu B W, Fan Y, Zhang J S, et al. Effect of SiO<sub>2</sub> and SiC on properties of Cu–Fe matrix sintered friction materials. <italic>Chin J Nonferrous Met</italic>, 2001, 11(增刊1): 110

    刘伯威, 樊毅, 张金生, 等. SiO<sub>2</sub>和SiC 对 Cu–Fe 基烧结摩擦材料性能的影响. 中国有色金属学报, 2001, 11(增刊1):110)
    [15] 郭炜, 谌昀, 陆德平, 等. 热处理对Cu–14Fe–C合金组织和性能的影响. 金属热处理, 2018, 43(4):88

    Guo W, Shen Y, Lu D P, et al. Effect of heat treatment on microstructure and properties of Cu–14Fe–C alloy. <italic>Heat Treat Met</italic>, 2018, 43(4): 88
    [16] Guo M X, Wang F, Yi L. The microstructure controlling and deformation behaviors of Cu–Fe–C alloy prepared by rapid solidification. <italic>Mater Sci Eng A</italic>, 2016, 657: 197 doi: 10.1016/j.msea.2016.01.068
    [17] Guo M X, Zhu J, Yi L, et al. Effects of precipitation and strain-induced martensitic transformation of Fe–C phases on the mechanical properties of Cu–Fe–C alloy. <italic>Mater Sci Eng A</italic>, 2017, 697: 119 doi: 10.1016/j.msea.2017.05.010
    [18] 崔忠圻, 覃耀春. 金属学与热处理. 2版. 北京: 机械工业出版社, 2011

    Cui Z Q, Qin Y C. Metallology and Heat Treatment. 2nd Ed. Beijing: China Machine Press, 2011
    [19] 史弼, 宋洪伟, 王秀芳, 等. 低碳板条马氏体钢的纳米压痕表征//材料科学与工程新进展论文集. 北京, 2004: 1300

    Shi B, Song H W, Wang X F, et al. Nanoindentation characterization of low carbon matensitic steels//Proceedings of New Progress on Materials Science and Engineering. Beijing, 2004: 1300
    [20] 张济山, 刘兴江, 崔华, 等. 金属基复合材料相界面区力学性能显微力学探针分析. 金属学报, 1997, 33(5):548

    Zhang J S, Liu X J, Cui H, et al. Mechanical properties around reinforce particles in metal matrix composites characterized by nanoindentation technique. <italic>Acta Metall Sinica</italic>, 1997, 33(5): 548
    [21] 何奖爱, 王玉玮. 材料磨损与耐磨材料. 沈阳: 东北大学出版社, 2001

    He J A, Wang Y W. Material Wear and Wear Resistance Materials. Shenyang: Northeastern University Press, 2001
    [22] 黄夏旭, 申炎华, 靳舜尧, 等. NM400/NM500级矿山机械用钢的高温磨损性能及机理. 工程科学学报, 2019, 41(6):797

    Huang X X, Shen Y H, Jin S Y, et al. High-temperature wear performance and mechanism of NM400/NM500 mining machinery steels. <italic>Chin J Eng</italic>, 2019, 41(6): 797
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  816
  • HTML全文浏览量:  394
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 刊出日期:  2020-09-20

目录

    /

    返回文章
    返回