• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe−Mn−(Al)−C高强韧性钢氢脆微观机制的研究进展

章小峰 万亚雄 武学俊 阚中伟 黄贞益

章小峰, 万亚雄, 武学俊, 阚中伟, 黄贞益. Fe−Mn−(Al)−C高强韧性钢氢脆微观机制的研究进展[J]. 工程科学学报, 2020, 42(8): 949-962. doi: 10.13374/j.issn2095-9389.2019.11.05.005
引用本文: 章小峰, 万亚雄, 武学俊, 阚中伟, 黄贞益. Fe−Mn−(Al)−C高强韧性钢氢脆微观机制的研究进展[J]. 工程科学学报, 2020, 42(8): 949-962. doi: 10.13374/j.issn2095-9389.2019.11.05.005
ZHANG Xiao-feng, WAN Ya-xiong, WU Xue-jun, KAN Zhong-wei, HUANG Zhen-yi. Research progress toward hydrogen embrittlement microstructure mechanism in Fe–Mn–(Al)–C high-strength-and-toughness steel[J]. Chinese Journal of Engineering, 2020, 42(8): 949-962. doi: 10.13374/j.issn2095-9389.2019.11.05.005
Citation: ZHANG Xiao-feng, WAN Ya-xiong, WU Xue-jun, KAN Zhong-wei, HUANG Zhen-yi. Research progress toward hydrogen embrittlement microstructure mechanism in Fe–Mn–(Al)–C high-strength-and-toughness steel[J]. Chinese Journal of Engineering, 2020, 42(8): 949-962. doi: 10.13374/j.issn2095-9389.2019.11.05.005

Fe−Mn−(Al)−C高强韧性钢氢脆微观机制的研究进展

doi: 10.13374/j.issn2095-9389.2019.11.05.005
基金项目: 国家自然科学基金资助项目(51674004)
详细信息
    通讯作者:

    E-mail: egzxf@ahut.edu.cn

  • 中图分类号: TG142.1

Research progress toward hydrogen embrittlement microstructure mechanism in Fe–Mn–(Al)–C high-strength-and-toughness steel

More Information
  • 摘要: 随着汽车行业的快速发展,轻量化汽车用钢的研发和应用越来越广泛。抗拉强度超过1000 MPa的第二、三代汽车用钢往往是复相组织,通过固溶、析出、变形、细晶强化等各种强化方式,在基体中形成大量缺陷,导致钢材服役过程中对氢更加敏感,容易在很小的氢溶解条件下发生氢脆。Fe−Mn−C系、Fe−Mn−Al−C系等含Mn量高的汽车结构用钢因层错能较高,不仅直接决定了其强韧性机制,还对其服役性能有重要影响。在Fe−Mn−C系TWIP钢的成分基础上,添加少量Al元素,形成Fe−Mn−(Al)−C钢,不仅能降低钢材密度,提高钢材的强韧性,也因Al元素改变了钢材的微观组织构成,一定程度上令氢脆得到缓解。但当Al含量较高时,形成低密度钢,其组织构成更加复杂,析出物更多,导致氢脆敏感性更显著。本文从Fe−Mn−(Al)−C高强韧性钢的组织构成、第二相、晶体缺陷等特征出发,综述了H在Fe−Mn−(Al)−C钢中的渗透、溶解和扩散行为,H与基体组织、析出相、晶格缺陷的交互作用,H在钢中的作用模型、氢脆机制、氢脆评价手段和方法等。并评述了Fe−Mn−(Al)−C高强韧性钢氢脆问题开展的相关研究工作和最新发展动态,指出通过第一性原理计算、分子动力学模拟和借助氢原子微印技术、三维原子探针等物理实验相结合的方法是从微观层面揭示高强韧性钢氢脆机制的未来发展方向。
  • 图  1  晶体缺陷中氢脆现象及示意图[14]

    Figure  1.  Hydrogen embrittlement phenomena and mechanisms[14]

    图  2  铁的三种晶体结构[25]。(a)面心立方结构;(b)体心立方结构;(c)密排六方结构;(d)H在八面体和四面体间隙

    Figure  2.  Three crystal structures of iron[25]: (a) face-centered cubic structure; (b) body-centered cubic structure; (c) close-packed hexagonal structure; (d) diagrams of H in octahedral and tetrahedral interstices

    图  3  氢原子在BCC、FCC和HCP晶格的迁移路径[23, 28]

    Figure  3.  Migration path of hydrogen atom in BCC, FCC, and HCP crystalline lattices[23, 28]

    图  4  FCC晶体中的层错堆垛示意图[35-36]。(a)无限层错;(b)两个不全位错为界的终止层错

    Figure  4.  Schematics of stacking faults in an FCC crystal described by stacking operators[35-36]: (a) an infinite stacking fault; (b) a terminated stacking fault bounded by two partial dislocations

    图  5  变形孪晶界氢俘获示意图(TB:孪晶界)[38]。(a)变形孪晶尖端的应力集中;(b)位错孪晶交叉形成的台阶处的应变场;(c)伪孪晶形成引起的晶格畸变;(d)变形孪晶的纳米结构,包括位错和纳米孪晶带

    Figure  5.  Schematics describing the factors affecting hydrogen trapping at the deformation twin boundaries (TB: twin boundary)[38]: (a) stress concentration at a tip of a deformation twin; (b) strain field at the steps formed by the dislocation–twin intersection; (c) lattice distortion due to pseudo-twin formation; (d) nanoscale structure of deformation twins, including dislocations and nanotwin plates

    图  6  氢在不同位置的溶解能[39]。(a)BCC铁中的四面体位和BCC∑3, BCC∑5晶界内各种中间(im)和界面 (if)的间隙吸附位;(b)FCC铁中的八面体位, FCC∑3和FCC∑11 Fe晶界内各种中间(im)和界面(if)的间隙吸附位

    Figure  6.  Solution energy of hydrogen as a function of the volume of the interstitial site[39]: (a) tetrahedral sites in BCC Fe and various intermediate (im) and interface (if) interstitial adsorption sites within BCC∑3 and BCC∑5 Fe grain boundaries; (b) octahedral sites in FCC Fe and various intermediate (im) and interface (if) interstitial adsorption sites within FCC∑3, and FCC∑11 Fe grain boundaries

    图  7  氢−金属平衡中的能量关系及氢在不同位置的迁移示意图

    Figure  7.  Schematic view of the energy relationship in hydrogen−metal equilibria and hydrogen migration in different sites

    图  8  缺陷形成、氢偏析、孪生应力集中和开裂的顺序过程示意图[13, 54]

    Figure  8.  Schematic of the sequential process of defect formation, hydrogen segregation, twinning-induced stress concentration, and cracking[13, 54]

    图  9  三叉晶界与变形孪晶界的裂纹起源[38]。(a)三叉晶界;(b)变形孪晶界

    Figure  9.  Crack initiation from a triple junction of grain boundaries and a grain boundary intercepting deformation twinning[38]: (a) a triple junction of the grain boundaries;(b) a grain boundary intercepting deformation twinning

    图  10  预诱导孪晶阻碍冷轧样品充氢后位错滑移的示意图

    Figure  10.  Graphical illustration showing the effect of preinduced twins on preventing dislocation slip after H-charging in cold-rolled sample

    图  11  Fe−18Mn−xAl钢的热解吸分析(TDA)曲线和断裂应力[13, 42, 58]。(a)相同充氢条件下的TDA;(b)不同扩散氢条件下缺口试样的断裂应力

    Figure  11.  TDA profiles and fracture stress with different Al contents in Fe−18Mn−xAl steels[13, 42, 58]: (a) TDA profiles at an identical hydrogen charging condition; (b) plot of fracture stress of notched specimens against diffusible hydrogen content

    图  12  含κappa碳化物Fe−26Mn−11Al−1.2C奥氏体钢的氢致晶间裂纹[13, 51]。(a)反极图(IPF);(b)充氢条件下的KAM图;(c)晶间裂纹形成

    Figure  12.  Hydrogen-induced intergranular crack in Fe−26Mn−11Al−1.2C austenitic steel containing κ-carbides[13, 51]: (a) inverse pole figure (IPF); (b) kernel average misoritation(KAM)maps under hydrogen charging; (c) intergranular crack formation

    图  13  氢辅助裂化混合机制的示意图[66]。(a)HELP与HEDE机制共同作用下的AIDE机制;(b)AIDE与HEDE机制

    Figure  13.  Schematics illustrating the hybrid mechanisms of hydrogen-assisted cracking[66]: (a) AIDE with contributions from HELP and HEDE; (b) AIDE alternating with HEDE

    图  14  钢中氢辅助裂纹和裂纹扩展的示意图[51]。(a)晶界处应变局部化;(b)扩散氢沿晶界向应变局部化区域迁移;(c)应变局部化带晶界处形成的微空洞;(d)微空洞合并及沿晶界传播

    Figure  14.  Schematic sketches showing hydrogen-assisted cracking and crack propagation in the steel[51]: (a) strain localization occurring particularly on grain boundaries; (b) diffusible hydrogen moving to the strain localization regions along the grain boundaries; (c) formation of micro-voids on the grain boundary intersecting strain localization bands; (d) micro-voids coalescence and subsequent propagation along grain boundaries

    表  1  α-Fe、γ-Fe和ε-Fe的晶格特征

    Table  1.   Crystallographic characteristics of α-Fe,γ-Fe, and ε-Fe structures

    Type of crystal structureLattice constant/ nmAtomic radius, r/ nmSize of tetrahedral interstice/ nmSize of octahedral interstice/ nmHydrogen atomic radius/ nm
    FCCa=b=c=0.344$r = \sqrt 2 a/4 = {\rm{0}}{\rm{.}}1216$0.225r=0.02740.414r=0.05030.037
    BCCa=b=c=0.286$r = \sqrt 3 a/4 = {\rm{0}}{\rm{.}}1238$0.291r=0.03600.154r=0.0191
    HCPa=b=0.245, c/a=0.1584$r{\rm{ = }}a/2 = {\rm{0}}{\rm{.}}1225$0.225r=0.02750.414r=0.0507
    下载: 导出CSV

    表  2  氢在BCC、FCC、FCT和HCP中扩散的迁移能

    Table  2.   Migration energy of hydrogen diffusion in BCC, nonmagnetic FCC, antiferromagnetic FCT, and HCP

    Type of crystal structurePathMigration energy/eV
    1#2#3#1#2#3#
    BCCT1—T2T1—O—T30.0880.123
    FCC(Nonmagnetic)O1—T—O3O1—O30.641.08
    FCC(Antiferromagnetic)O1—T—O3O1—O30.440.84
    FCTO1—T—O3O1—O2O1—O30.440.721.07
    HCPO1—O2O1—T—O3O1—O30.720.771.26
    下载: 导出CSV

    表  3  氢与钢中元素、空位及陷阱位的结合能

    Table  3.   Elements and vacancy in steel and selected trap sites binding energy values of H in steel

    Atom and vacancy
    defect sites
    Binding energy between H atom
    and point defect/ eV
    Trap sitesBinding energy between H atom
    and line, surface, volume
    defects/ (kJ·mol−1)
    References
    H with vacancy0.57Substitutional Ni in Fe7.7−9.7[25, 48]
    H with solid solution atom0.57−0.60Dislocation / Dislocation cores19.2−26 / 58−(62.2±0.3)[25, 48-50]
    H with carbon atom0.09Grain boundaries20−46[25, 48-49]
    H with aluminium atom0.04α/γ interface−52[25, 48]
    H with copper atom0.06α/cementite interface8.4−13.4[25, 48]
    H with nickel atom0.01Incoherent carbides>97[25, 48]
    H with manganese and
    silicon atom
    Incoherent particles in Fe67.5−96.5[25, 48]
    Inclusions79[49]
    Twin boundaries62[49]
    下载: 导出CSV

    表  4  钢中H的激活能值

    Table  4.   Activation energy values of H in steel

    Trap siteSteelActivation energy/(kJ·mol−1)References
    Grain boundaryPure iron17[50-51]
    Elastic field of edge dislocationPure iron Martensitic steel Austenitic steel27–35[50-52]
    Micro-voidPure iron35[50-51]
    Σ3 twin boundaryAustenitic steel62[51-52]
    Dislocation coreMartensitic steel58[51, 53]
    k-carbidesAustenitic steel76–80[51]
    下载: 导出CSV

    表  5  BCC、FCC和HCP晶体中不同位置的氢形成能

    Table  5.   Formation energy of H in different sites of BCC, FCC, and HCP Fe crystal

    Type of crystal structureT-site/
    eV
    O-site/
    eV
    Formation energy of substitutional /eVFormation energy of vacancy /eVT-site near a single vacancy /eVO-site near s single vacancy /eV
    BCC−3.172.612.44−3.24
    FCC−2.68−3.242.39−3.705−3.717
    HCP−2.79−3.30
    下载: 导出CSV

    表  6  晶界处氢扩散的计算数值

    Table  6.   Calculated values of hydrogen diffusion at grain boundaries

    Grain size, d/μmGrain boundary area per unit volume, ${S_v}$/(m2·m−3)Content of diffusible hydrogen, $X_{\rm{H}}^{{\rm{all}}}$/10−6Hydrogen mass per unit grain boundary area,
    $Y_{\rm{H}}^{{\rm{GB}}}$ /(g·m−2)
    375.4×1043.304.8×10−4
    2.38.7×1054.584.1×10−5
    0.852.4×1067.102.4×10−5
    下载: 导出CSV
  • [1] Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: a review. <italic>Int J Hydrogen Energy</italic>, 2018, 43(46): 21603 doi: 10.1016/j.ijhydene.2018.09.201
    [2] Liu Q L, Zhou Q J, Venezuela J, et al. Hydrogen influence on some advanced high-strength steels. <italic>Corros Sci</italic>, 2017, 125: 114 doi: 10.1016/j.corsci.2017.06.012
    [3] Loidl M, Kolk O, Veith S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels. <italic>Materialwissenschaft Und Werkstofftechnik</italic>, 2011, 42(12): 1105 doi: 10.1002/mawe.201100917
    [4] Shin S E, Lee S J, Nambu S, et al. Hydrogen embrittlement in multilayer steel consisting of martensitic and twinning induced plasticity steels. <italic>Mater Sci Eng A</italic>, 2019, 756: 508 doi: 10.1016/j.msea.2019.04.085
    [5] Koyama M, Akiyama E, Tsuzaki K. Effect of hydrogen content on the embrittlement in a Fe−Mn−C twinning-induced plasticity steel. <italic>Corros Sci</italic>, 2012, 59: 277 doi: 10.1016/j.corsci.2012.03.009
    [6] De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels. <italic>Acta Mater</italic>, 2018, 142: 283 doi: 10.1016/j.actamat.2017.06.046
    [7] Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel. <italic>Acta Mater</italic>, 2012, 60(16): 5791 doi: 10.1016/j.actamat.2012.07.018
    [8] Hong S, Lee J, Lee B J, et al. Effects of intergranular carbide precipitation on delayed fracture behavior in three twinning induced plasticity (TWIP) steels. <italic>Mater Sci Eng A</italic>, 2013, 587: 85 doi: 10.1016/j.msea.2013.08.063
    [9] Bracke L, Kestens L, Penning J. Direct observation of the twinning mechanism in an austenitic Fe−Mn−C steel. <italic>Scripta Mater</italic>, 2009, 61(2): 220 doi: 10.1016/j.scriptamat.2009.03.045
    [10] Chen S P, Rana R, Haldar A, et al. Current state of Fe−Mn−Al−C low density steels. <italic>Prog Mater Sci</italic>, 2017, 89: 345 doi: 10.1016/j.pmatsci.2017.05.002
    [11] Scott C, Allain S, Faral M, et al. The development of a new Fe−Mn−C austenitic steel for automotive applications. <italic>Rev Met Paris</italic>, 2006, 103(6): 293 doi: 10.1051/metal:2006142
    [12] Chen L, Lee S J, De Cooman B C. Mechanical properties of H-charged Fe−18Mn−1.5Al−0.6C TWIP steel. <italic>ISIJ Int</italic>, 2012, 52(9): 1670 doi: 10.2355/isijinternational.52.1670
    [13] Koyama M, Akiyama E, Lee Y K, et al. Overview of hydrogen embrittlement in high-Mn steels. <italic>Int J Hydrogen Energy</italic>, 2017, 42(17): 12706 doi: 10.1016/j.ijhydene.2017.02.214
    [14] Lynch S P. Hydrogen embrittlement (HE) phenomena and mechanisms // Stress Corrosion Cracking. Cambridge: Woodhead Publishing, 2011
    [15] Nagumo M, Takai K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview. <italic>Acta Mater</italic>, 2019, 165: 722 doi: 10.1016/j.actamat.2018.12.013
    [16] Doshida T, Takai K. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content. <italic>Acta Mater</italic>, 2014, 79: 93 doi: 10.1016/j.actamat.2014.07.008
    [17] Lovicu G, Bottazzi M, D'Aiuto F, et al. Hydrogen embrittlement of automotive advanced high-strength steels. <italic>Metall Mater Trans A</italic>, 2012, 43(11): 4075 doi: 10.1007/s11661-012-1280-8
    [18] Tian X, Li H, Zhang Y S. Effect of Al content on stacking fault energy in austenitic Fe−Mn−Al−C alloys. <italic>J Mater Sci</italic>, 2008, 43(18): 6214 doi: 10.1007/s10853-008-2919-0
    [19] Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition. <italic>Mater Sci Eng A</italic>, 2010, 527(16-17): 3651 doi: 10.1016/j.msea.2010.02.058
    [20] Kim M S, Kang Y B. Development of thermodynamic database for high Mn–high Al steels: Phase equilibria in the Fe−Mn−Al−C system by experiment and thermodynamic modeling. <italic>Calphad</italic>, 2015, 51: 89 doi: 10.1016/j.calphad.2015.08.004
    [21] Lu T, Niu G J, Xu Y P, et al. Molecular dynamics study of the diffusion properties of H in Fe with point defects. <italic>Fusion Eng Des</italic>, 2016, 113: 340 doi: 10.1016/j.fusengdes.2016.06.044
    [22] 何洋. 奥氏体钢中氢的扩散与聚集行为的计算研究[学位论文]. 北京: 中国石油大学, 2017

    He Y. First-Principle Study on Diffusion and Aggregation Behavior of Hydrogen Atoms in Austenite Steel [Dissertation]. Beijing: China University of Petroleum, 2017
    [23] Hirata K, Iikubo S, Koyama M, et al. First-principles study on hydrogen diffusivity in BCC, FCC, and HCP iron. <italic>Metall Mater Trans A</italic>, 2018, 49(10): 5015 doi: 10.1007/s11661-018-4815-9
    [24] Counts W A, Wolverton C, Gibala R. First-principles energetics of hydrogen traps in α-Fe: Point defects. <italic>Acta Mater</italic>, 2010, 58(14): 4730 doi: 10.1016/j.actamat.2010.05.010
    [25] He Y, Li Y J, Chen C F, et al. Diffusion coefficient of hydrogen interstitial atom in α-Fe, γ-Fe and ε-Fe crystals by first-principle calculations. <italic>Int J Hydrogen Energy</italic>, 2017, 42(44): 27438 doi: 10.1016/j.ijhydene.2017.08.212
    [26] Jiang D E, Carter E A. Diffusion of interstitial hydrogen into and through bcc Fe from first principles. <italic>Phys Rev B</italic>, 2004, 70(6): 064102 doi: 10.1103/PhysRevB.70.064102
    [27] Li X, Gao C, Xiong X L, et al. Hydrogen diffusion in α-Fe under an applied 3-axis strain: a quantum manifestation. <italic>Int J Hydrogen Energy</italic>, 2015, 40(32): 10340 doi: 10.1016/j.ijhydene.2015.06.089
    [28] Koyama M, Abe Y, Tsuzaki K. Split and shift of ε-martensite peak in an X-ray diffraction profile during hydrogen desorption: a geometric effect of atomic sequence. <italic>ISIJ Int</italic>, 2018, 58(9): 1745 doi: 10.2355/isijinternational.ISIJINT-2018-260
    [29] Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe−27Mn−12Al−0.8C duplex steel in association with ordered phases at ambient temperature. <italic>Mater Sci Eng A</italic>, 2013, 586: 276 doi: 10.1016/j.msea.2013.07.094
    [30] 章小峰, 李家星, 万亚雄, 等. 低密度钢中有序析出相的研究进展. 材料导报, 2019, 33(23):3979 doi: 10.11896/cldb.18120211

    Zhang X F, Li J X, Wan Y X, et al. Research progress of ordered precipitates in low-density steels. <italic>Mater Rev</italic>, 2019, 33(23): 3979 doi: 10.11896/cldb.18120211
    [31] Zhang G K, Huang G Q, Hu M J, et al. Stability and clusterization of hydrogen-vacancy complexes in B2-FeAl: insight from hydrogen embrittlement. <italic>RSC Adv</italic>, 2017, 7(18): 11094 doi: 10.1039/C6RA27936H
    [32] Shu X L, Hu W Y, Xiao H N, et al. Vacancies and antisites in B2 FeAl and DO<sub>3</sub> Fe<sub>3</sub>Al with a modified analytic EAM model. <italic>J Mater Sci Technol</italic>, 2001, 17(6): 601
    [33] 黄广棋, 张桂凯, 罗朝以, 等. Fe−Al金属间化合物氢脆效应研究现状. 材料导报, 2018, 32(11):1878 doi: 10.11896/j.issn.1005-023X.2018.11.015

    Huang G Q, Zhang G K, Luo Z Y, et al. A review on hydrogen embrittlement of Fe−Al intermetallics. <italic>Mater Rev</italic>, 2018, 32(11): 1878 doi: 10.11896/j.issn.1005-023X.2018.11.015
    [34] González E A, Jasen P V, Brizuela G, et al. The effect of interstitial hydrogen on the electronic structure of the B2 FeAl alloy. <italic>Phys Status Solidi B</italic>, 2007, 244(10): 3684 doi: 10.1002/pssb.200743076
    [35] Curtze S, Kuokkala V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. <italic>Acta Mater</italic>, 2010, 58(15): 5129 doi: 10.1016/j.actamat.2010.05.049
    [36] Ferreira P J, Mullner P. A thermodynamic model for the stacking-fault energy. <italic>Acta Mater</italic>, 1998, 46(13): 4479 doi: 10.1016/S1359-6454(98)00155-4
    [37] Mahajan S, Chin G Y. Twin-slip, twin-twin and slip-twin interactions in Co-8wt.% Fe alloy single crystals. <italic>Acta Metall</italic>, 1973, 21(2): 173 doi: 10.1016/0001-6160(73)90059-X
    [38] Koyama M, Akiyama E, Tsuzaki K, et al. Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. <italic>Acta Mater</italic>, 2013, 61(12): 4607 doi: 10.1016/j.actamat.2013.04.030
    [39] Du Y A, Ismer L, Rogal J, et al. First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe. <italic>Phys Rev B</italic>, 2011, 84(14): 144121 doi: 10.1103/PhysRevB.84.144121
    [40] Lee S M, Park I J, Jung J G, et al. The effect of Si on hydrogen embrittlement of Fe−18Mn−0.6C−<italic>x</italic>Si twinning-induced plasticity steels. <italic>Acta Mater</italic>, 2016, 103: 264 doi: 10.1016/j.actamat.2015.10.015
    [41] Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe−Mn−C TWIP steels. <italic>Corros Sci</italic>, 2014, 82: 218 doi: 10.1016/j.corsci.2014.01.022
    [42] Malard B, Remy B, Scott C, et al. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe−Mn−C steel studied by small-angle neutron scattering. <italic>Mater Sci Eng A</italic>, 2012, 536: 110 doi: 10.1016/j.msea.2011.12.080
    [43] Kwon Y J, Lee T, Lee J, et al. Role of Cu on hydrogen embrittlement behavior in Fe−Mn−C−Cu TWIP steel. <italic>Int J Hydrogen Energy</italic>, 2015, 40(23): 7409 doi: 10.1016/j.ijhydene.2015.04.022
    [44] Gangloff R P, Somerday B P. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. Cambridge: Woodhead Publishing, 2012
    [45] Toribio J, Kharin V. Hydrogen transport to fracture sites in metals and alloys: multiphysics modelling. <italic>Procedia Struct Integrity</italic>, 2017, 5: 1291 doi: 10.1016/j.prostr.2017.07.112
    [46] Oriani R A. The diffusion and trapping of hydrogen in steel. <italic>Acta Metall</italic>, 1970, 18(1): 147 doi: 10.1016/0001-6160(70)90078-7
    [47] Krom A H M, Bakker A. Hydrogen trapping models in steel. <italic>Metall Mater Trans B</italic>, 2000, 31(6): 1475 doi: 10.1007/s11663-000-0032-0
    [48] Maroef I, Olson D L, Eberhart M, et al. Hydrogen trapping in ferritic steel weld metal. <italic>Int Mater Rev</italic>, 2002, 47(4): 191 doi: 10.1179/095066002225006548
    [49] Bai Y, Momotani Y, Chen M C, et al. Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel. <italic>Mater Sci Eng A</italic>, 2016, 651: 935 doi: 10.1016/j.msea.2015.11.017
    [50] Choo W Y, Lee J Y. Thermal analysis of trapped hydrogen in pure iron. <italic>Metall Trans A</italic>, 1982, 13(1): 135 doi: 10.1007/BF02642424
    [51] Koyama M, Springer H, Merzlikin S V, et al. Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe−Mn−Al−C light weight austenitic steel. <italic>Int J Hydrogen Energy</italic>, 2014, 39(9): 4634 doi: 10.1016/j.ijhydene.2013.12.171
    [52] So K H, Kim J S, Chun Y S, et al. Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe−18Mn−1.5Al−0.6C TWIP steel. <italic>ISIJ Int</italic>, 2009, 49(12): 1952 doi: 10.2355/isijinternational.49.1952
    [53] Thomas R L S, Li D M, Gangloff R P, et al. Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength AERMET 100 steel. <italic>Metall Mater Trans A</italic>, 2002, 33(7): 1991 doi: 10.1007/s11661-002-0032-6
    [54] Bal B, Koyama M, Gerstein G, et al. Effect of strain rate on hydrogen embrittlement susceptibility of twinning-induced plasticity steel pre-charged with high-pressure hydrogen gas. <italic>Int J Hydrogen Energy</italic>, 2016, 41(34): 15362 doi: 10.1016/j.ijhydene.2016.06.259
    [55] Casillas G, Gazder A A, Pereloma E V, et al. Evidencing extrinsic stacking faults in twinning-induced plasticity steel. <italic>Mater Charact</italic>, 2017, 123: 275 doi: 10.1016/j.matchar.2016.11.039
    [56] Khedr M, Li W, Jin X J. Studying hydrogen embrittlement in nano-twinned polycrystalline Fe−12.5Mn−1.2C austenitic steel // TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings. Phoenix, 2018: 113
    [57] Koyama M, Akiyama E, Tsuzaki K. Hydrogen embrittlement in Al-added twinning-induced plasticity steels evaluated by tensile tests during hydrogen charging. <italic>ISIJ Int</italic>, 2012, 52(12): 2283 doi: 10.2355/isijinternational.52.2283
    [58] Chun Y S, Park K T, Lee C S. Delayed static failure of twinning-induced plasticity steels. <italic>Scripta Mater</italic>, 2012, 66(12): 960 doi: 10.1016/j.scriptamat.2012.02.038
    [59] Chin K G, Kang C Y, Shin S Y, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. <italic>Mater Sci Eng A</italic>, 2011, 528(6): 2922 doi: 10.1016/j.msea.2010.12.085
    [60] Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. <italic>Scripta Mater</italic>, 2013, 68(6): 343 doi: 10.1016/j.scriptamat.2012.08.038
    [61] Rao V S. Some observations on the hydrogen embrittlement of Fe<sub>3</sub>Al−Fe<sub>3</sub>AlC intermetallic compounds. <italic>Mater Res Bull</italic>, 2004, 39(2): 169 doi: 10.1016/j.materresbull.2003.10.006
    [62] Timmerscheidt T A, Dey P, Bogdanovski D, et al. The role of κ-carbides as hydrogen traps in high-Mn steels. <italic>Metals</italic>, 2017, 7(7): 264 doi: 10.3390/met7070264
    [63] Turk A, Martín D S, Rivera-Díaz-del-Castillo P E J, et al. Correlation between vanadium carbide size and hydrogen trapping in ferritic steel. <italic>Scri Mater</italic>, 2018, 152: 112
    [64] Counts W, Wolverton C, Gibala R. Binding of multiple H atoms to solute atoms in bcc Fe using first principles. <italic>Acta Mater</italic>, 2011, 59(14): 5812 doi: 10.1016/j.actamat.2011.05.058
    [65] Marchi C S, Somerday B P, Robinson S L. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures. <italic>Int J Hydrogen Energy</italic>, 2007, 32(1): 100 doi: 10.1016/j.ijhydene.2006.05.008
    [66] Martin M L, Dadfarnia M, Nagao A, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. <italic>Acta Mater</italic>, 2019, 165: 734 doi: 10.1016/j.actamat.2018.12.014
    [67] Matsumoto R, Taketomi S, Matsumoto S, et al. Atomistic simulations of hydrogen embrittlement. <italic>Int J Hydrogen Energy</italic>, 2009, 34(23): 9576 doi: 10.1016/j.ijhydene.2009.09.052
    [68] Song J, Curtin W A. Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system. <italic>Acta Mater</italic>, 2014, 68: 61 doi: 10.1016/j.actamat.2014.01.008
    [69] 解德刚, 李蒙, 单智伟. 氢与金属的微观交互作用研究进展. 中国材料进展, 2018, 37(3):215

    Xie D G, Li M, Shan Z W. Review on hydrogen-microstructure interaction in metals. <italic>Mater China</italic>, 2018, 37(3): 215
    [70] Chida T, Hagihara Y, Akiyama E, et al. Comparison of constant load, SSRT and CSRT methods for hydrogen embrittlement evaluation using round bar specimens of high strength steels. <italic>Tetsu-to-Hagane</italic>, 2014, 100(10): 1298 doi: 10.2355/tetsutohagane.100.1298
    [71] Song S W, Kim J N, Seo H J, et al. Effects of carbon content on the tensile and fatigue properties in hydrogen-charged Fe−17Mn−<italic>x</italic>C steels: the opposing trends. <italic>Mater Sci Eng A</italic>, 2018, 724: 469 doi: 10.1016/j.msea.2018.03.117
    [72] Li X C, Liu Y N, Yu Y, et al. Helium defects interactions and mechanism of helium bubble growth in tungsten: a molecular dynamics simulation. <italic>J Nucl Mater</italic>, 2014, 451(1-3): 356
    [73] Ismer L, Hickel T, Neugebauer J. Ab initio study of the solubility and kinetics of hydrogen in austenitic high Mn steels. <italic>Phys Rev B</italic>, 2010, 81(9): 094111 doi: 10.1103/PhysRevB.81.094111
    [74] Jiang Y F, Zhang B, Zhou Y, et al. Atom probe tomographic observation of hydrogen trapping at carbides/ferrite interfaces for a high strength steel. <italic>J Mater Sci Technol</italic>, 2018, 34(8): 1344 doi: 10.1016/j.jmst.2017.11.008
    [75] Ishikawa N, Sueyoshi H, Nagao A. Hydrogen microprint analysis on the effect of dislocations on grain boundary hydrogen distribution in steels. <italic>ISIJ Int</italic>, 2016, 56(3): 413 doi: 10.2355/isijinternational.ISIJINT-2015-329
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  1061
  • HTML全文浏览量:  990
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-05
  • 刊出日期:  2020-09-11

目录

    /

    返回文章
    返回