• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

裂隙性储层水平井起裂行为的控制

王志荣 宋沛 温震洋 陈玲霞

王志荣, 宋沛, 温震洋, 陈玲霞. 裂隙性储层水平井起裂行为的控制[J]. 工程科学学报, 2020, 42(11): 1449-1456. doi: 10.13374/j.issn2095-9389.2019.11.15.003
引用本文: 王志荣, 宋沛, 温震洋, 陈玲霞. 裂隙性储层水平井起裂行为的控制[J]. 工程科学学报, 2020, 42(11): 1449-1456. doi: 10.13374/j.issn2095-9389.2019.11.15.003
WANG Zhi-rong, SONG Pei, WEN Zhen-yang, CHEN Ling-xia. Control of fracturing behavior of fractured reservoir under horizontal wells[J]. Chinese Journal of Engineering, 2020, 42(11): 1449-1456. doi: 10.13374/j.issn2095-9389.2019.11.15.003
Citation: WANG Zhi-rong, SONG Pei, WEN Zhen-yang, CHEN Ling-xia. Control of fracturing behavior of fractured reservoir under horizontal wells[J]. Chinese Journal of Engineering, 2020, 42(11): 1449-1456. doi: 10.13374/j.issn2095-9389.2019.11.15.003

裂隙性储层水平井起裂行为的控制

doi: 10.13374/j.issn2095-9389.2019.11.15.003
基金项目: 国家自然科学基金资助项目(41272339);河南省自然科学基金资助项目(182300410149)
详细信息
    通讯作者:

    E-mail:wangzhirong513@sina.com

  • 中图分类号: TE375

Control of fracturing behavior of fractured reservoir under horizontal wells

More Information
  • 摘要: 针对裂隙性储层水力压裂行为中出现的围岩维护、增透效率与地下水害防治等实际问题,本文对多场多相耦合作用下起裂压力控制机制,以及压裂性评价展开了深入研究。首先分析了射孔集中力对原始应力场的改造作用;其次,考虑压裂液在储层原生裂隙中的渗透作用;最后,基于断裂力学强度准则建立了水平井起裂压力计算模型。根据模型分析了储层裂隙场几何参数对起裂压力的控制作用,提出了裂隙场特征参数的概念。研究结果表明,水平井水力压裂是流固多相在射孔应力场、压裂液渗流场以及储层裂隙场耦合空间内相互作用过程,裂隙场特征参数对起裂压力的大小起着主导控制作用,其中最大控制因素为储层隙宽,且当储层隙宽在200~700 μm区间内时,水力压裂对改善其渗透性能才有实际意义,从而解决了裂隙性储层起裂压力的定量化与压裂性评判问题。经实例计算与对比发现,苏里格气田东区H8段的砂岩储层,起裂压力的理论值与实测值契合度较高,压裂后的产能也十分理想,从而验证了模型的正确性,可以为水平井压裂施工提供理论依据。
  • 图  1  水平井压裂地质模型

    Figure  1.  Horizontal well fracturing geological model

    图  2  力学模型单元

    Figure  2.  Mechanical model unit

    图  3  裂隙场特征参数(D)影响度分析图

    Figure  3.  Analysis chart of crack control parameter influence

    图  4  起裂压力理论值与实测值对比图

    Figure  4.  Comparison of theoretical and measured values of cracking pressure

    表  1  焦作矿区裂隙场特征参数统计表

    Table  1.   Characteristic parameter statistics table of fracture field in Jiaozuo mining areas

    NumberCrack half length,
    a / m
    Average crack width,
    b / m
    Crack average distance,
    s/m
    Crack surface roughness,
    λ[22]
    Rock permeability coefficient,
    K/ (m·s–1)
    Fracture toughness constant,
    KIC / (MPa·m1/2)
    10.014.0×10–45.26×10–31/121.24×10–20.118
    20.0182.3×10–41.22×10–31/121.02×10–20.212
    30.0043.8×10–43.85×10–31/121.46×10–20.047
    40.0154.0×10–45.88×10–31/121.11×10–20.175
    50.0253.0×10–42.17×10–31/121.27×10–20.295
    下载: 导出CSV

    表  2  裂缝控制参数影响度分析表

    Table  2.   Sensitivity analysis table of crack control parameter influence

    iReference valueFluctuation range of uncertainties
    b / μm342–100%–80%–60%–40%–20%020%40%60%80%100%
    Db / (N·m–1100000.414.6726.2100299753167934036403.2
    a / cm1.44–100%–80%–60%–40%–20%020%40%60%80%100%
    Da / (N·m–1100––2501.3625.3277.9152.610069.551.139.130.925.1
    s / mm3.676–100%–80%–60%–40%–20%020%40%60%80%100%
    Ds / (N·m–1100––500250166.7125.010083.371.462.555.650.0
    Note:Db, Da and Da are crack control parameters related to b, a and s, respectively.
    下载: 导出CSV

    表  3  起裂压力理论值与实测值对比表

    Table  3.   Comparison table of theoretical and measured values of cracking pressure

    Burial depth / mPerforation half pitch, L / mWellbore radius,
    Rw / m
    Crack field characteristic parameters, D /(N·m–1)Poisson ratio, μInitiation pressure / MPa
    Theoretical valueActual value
    319020.27.653×1040.30648.1152.94
    320020.27.653×1040.25149.1847.06
    321020.27.653×1040.30550.2552.95
    322020.27.653×1040.25051.3250.21
    323020.27.653×1040.26052.3948.85
    324020.27.653×1040.31953.4653.00
    下载: 导出CSV
  • [1] 崔峰, 刘星合. 综采工作面水力压裂顶板控制技术研究. 煤炭科学技术, 2019, 47(9):172

    Cui F, Liu X H. Research on control technology of hydraulic fracturing roof in fully-mechanized mining face. Coal Sci Technol, 2019, 47(9): 172
    [2] 张杰, 杨涛, 索永录, 等. 基于耦合评价的安山煤矿顶板突水预测模型研究. 西安科技大学学报, 2018, 38(4):569

    Zhang J, Yang T, Suo Y L, et al. Forecast model for roof water inrush in Anshan coal mine based on coupling evaluation. J Xian Univ Sci Technol, 2018, 38(4): 569
    [3] 孙魁, 王英, 李成, 等. 巨厚煤层顶板离层水致灾机理研究. 河南理工大学学报: 自然科学版, 2018, 37(2):14

    Sun K, Wang Y, Li C, et al. Mechanism of roof separation water disaster in thick coal seam. J Henan Polytech Univ Nat Sci, 2018, 37(2): 14
    [4] 张群, 葛春贵, 李伟, 等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式. 煤炭学报, 2018, 43(1):150

    Zhang Q, Ge C G, Li W, et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture. J China Coal Soc, 2018, 43(1): 150
    [5] Yin L M, Ma K, Chen J T, et al. Mechanical model on water inrush assessment related to deep mining above multiple aquifers. Mine Water Environ, 2019, 38(4): 827 doi: 10.1007/s10230-019-00623-3
    [6] 巫修平, 张群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制. 天然气地球科学, 2018, 29(2):268

    Wu X P, Zhang Q. Research on controlling mechanism of fracture propagation of multi-stage hydraulic fracturing horizontal well in roof of broken soft and low permeability coal seam. Nat Gas Geosci, 2018, 29(2): 268
    [7] 郑纲, 徐小兵, 何渊, 等. 厚煤层放顶煤开采底板突水机理及水害探查技术. 煤田地质与勘探, 2019, 47(增刊1): 7

    Zheng G, Xu X B, He Y, et al. Mechanism of Ordovician limestone water inrush from the floor of caving mining face in thick coal seam and water hazard detection technology of nearly horozontal borehole. Coal Geol Explor, 2019, 47(Suppl 1): 7
    [8] 丁乙, 刘向君, 罗平亚. 裂缝性储层射孔井起裂压力影响因素分析. 应用数学和力学, 2018, 39(7):811

    Ding Y, Liu X J, Luo P Y. Research on influential factors of initiation pressure in fracture formation for perforated boreholes. Appl Math Mech, 2018, 39(7): 811
    [9] 范勇, 赵彦琳, 朱哲明, 等. 基于井筒-射孔模型的地层破裂压力及起裂角的理论研究. 中南大学学报: 自然科学版, 2019, 50(3):669

    Fan Y, Zhao Y L, Zhu Z M, et al. Theoretical study of break down pressures and fracture initiation angles based on model containing wellbore and perforations. J Cent South Univ Sci Technol, 2019, 50(3): 669
    [10] 刘得潭, 沈振中, 徐力群, 等. 裂隙岩体水力劈裂临界水压力试验研究. 南水北调与水利科技, 2018, 16(2):140

    Liu D T, Shen Z Z, Xu L Q, et al. Experimental study on critical internal water pressure of hydraulic fracturing of fractured rock mass. South-to-North Water Transfers Water Sci Technol, 2018, 16(2): 140
    [11] 邓帅, 朱哲明, 王磊, 等. 原岩应力对裂纹动态断裂行为的影响规律研究. 岩石力学与工程学报, 2019, 38(10):1989

    Deng S, Zhu Z M, Wang L, et al. Study on the influence of in-situ stresses on dynamic fracture behaviors of cracks. Chin J Rock Mech Eng, 2019, 38(10): 1989
    [12] Lu Y, Li H T, Lu C, et al. Predicting the fracture initiation pressure for perforated water injection wells in fossil energy development. Int J Hydrogen Energy, 2019, 44(31): 16257 doi: 10.1016/j.ijhydene.2019.04.208
    [13] 张帆, 马耕, 刘晓, 等. 煤岩水力压裂起裂压力和裂缝扩展机制实验研究. 煤田地质与勘探, 2017, 45(6):84 doi: 10.3969/j.issn.1001-1986.2017.06.014

    Zhang F, Ma G, Liu X, et al. Experimental study on initiation pressure and mechanism of fracture propagation of hydraulic fracturing in coal and rock mass. Coal Geol Explor, 2017, 45(6): 84 doi: 10.3969/j.issn.1001-1986.2017.06.014
    [14] 程玉刚, 卢义玉, 葛兆龙, 等. 孔隙水压力梯度对煤层导向压裂控制影响. 东北大学学报: 自然科学版, 2017, 38(7):1043

    Cheng Y G, Lu Y Y, Ge Z L, et al. Influence of pore water pressure gradient on guiding hydraulic fracturing in underground coal mine. J Northeast Univ Nat Sci, 2017, 38(7): 1043
    [15] 马天寿, 彭念, 陈平, 等. 页岩气水平井井壁裂缝起裂力学行为研究. 西南石油大学学报: 自然科学版, 2019, 41(6):87

    Ma T S, Peng N, Chen P, et al. Wellbore fracture initiation mechanical behavior in a horizontal shale gas well. J Southwest Petrol Univ Sci Technol Ed, 2019, 41(6): 87
    [16] 文贤利. 水力喷射压裂裂缝起裂与扩展规律研究[学位论文]. 西安: 西安石油大学, 2011

    Wen X L. Study on the Fracture Initiation and Propagation for Hydrajet-Fracturing[Dissertation]. Xi’an: Xi’an Shiyou University, 2011
    [17] 张金才, 尹尚先. 页岩油气与煤层气开发的岩石力学与压裂关键技术. 煤炭学报, 2014, 39(8):1691

    Zhang J C, Yin S X. Some technologies of rock mechanics applications and hydraulic fracturing in shale oil, shale gas and coalbed methane. J China Coal Soc, 2014, 39(8): 1691
    [18] 李丹琼, 张士诚, 张遂安, 等. 基于煤系渗透率各向异性测试的水平井穿层压裂效果模拟. 石油学报, 2015, 36(8):988 doi: 10.7623/syxb201508010

    Li D Q, Zhang S C, Zhang S A, et al. Effect simulation of horizontal well fracturing through strata based on coal seam permeability anisotropy test. Acta Petrol Sin, 2015, 36(8): 988 doi: 10.7623/syxb201508010
    [19] 詹美礼, 岑建. 岩体水力劈裂机制圆筒模型试验及解析理论研究. 岩石力学与工程学报, 2007, 26(6):1173 doi: 10.3321/j.issn:1000-6915.2007.06.011

    Zhan M L, Cen J. Experimental and analytical study on hydraulic fracturing of cylinder sample. Chin J Rock Mech Eng, 2007, 26(6): 1173 doi: 10.3321/j.issn:1000-6915.2007.06.011
    [20] 程靳, 赵树山. 断裂力学. 北京: 科学出版社, 2006

    Cheng J, Zhao S S. Fracture Mechanics. Beijing: Science Press, 2006
    [21] 李宏欣. 焦作九里山井田煤层气赋存特征分析. 中州煤炭, 2012, 34(9):4 doi: 10.3969/j.issn.1003-0506.2012.09.002

    Li H X. Analysis on CBM occurrence characteristics of Jiulishan coalfield in Jiaozuo. Zhongzhou Coal, 2012, 34(9): 4 doi: 10.3969/j.issn.1003-0506.2012.09.002
    [22] 叶建平, 张守仁, 凌标灿, 等. 煤层气物性参数随埋深变化规律研究. 煤炭科学技术, 2014, 42(6):35

    Ye J P, Zhang S R, Ling B C, et al. Study on variation law of coalbed methane physical property parameters with seam depth. Coal Sci Technol, 2014, 42(6): 35
    [23] 马旭, 郝瑞芬, 来轩昂, 等. 苏里格气田致密砂岩气藏水平井体积压裂矿场试验. 石油勘探与开发, 2014, 41(6):742 doi: 10.11698/PED.2014.06.15

    Ma X, Hao R F, Lai X A, et al. Field test of volume fracturing for horizontal wells in Sulige tight sandstone gas reservoirs. Petrol Explor Dev, 2014, 41(6): 742 doi: 10.11698/PED.2014.06.15
    [24] 崔明明, 李进步, 王宗秀, 等. 辫状河三角洲前缘致密砂岩储层特征及优质储层控制因素——以苏里格气田西南部石盒子组8段为例. 石油学报, 2019, 40(3):279 doi: 10.7623/syxb201903003

    Cui M M, Li J B, Wang Z X, et al. Characteristics of tight sand reservoir and controlling factors of high-quality reservoir at braided delta front: a case study from Member 8 of Shihezi formation in southwestern Sulige gas field. Acta Petrol Sin, 2019, 40(3): 279 doi: 10.7623/syxb201903003
    [25] 邓华锋, 朱敏, 李建林, 等. 砂岩I型断裂韧度及其与强度参数的相关性研究. 岩土力学, 2012, 33(12):3585

    Deng H F, Zhu M, Li J L, et al. Study of mode-Ⅰ fracture toughness and its correlation with strength parameters of sandstone. Rock Soil Mech, 2012, 33(12): 3585
    [26] 周文露. 苏里格东区召54井区马五_(1-4)亚段沉积与成岩作用研究[学位论文]. 成都: 西南石油大学, 2016

    Zhou W L. Sedimentary and Diagenesis of Mawu _ (1-4) Subsection in Well Zhao54, Sulige District[Dissertation]. Chengdu: Southwest Petroleum University, 2016
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  952
  • HTML全文浏览量:  455
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-15
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回