• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含端部裂隙大理岩单轴压缩破坏及能量耗散特性

韩震宇 李地元 朱泉企 刘濛 李夕兵

韩震宇, 李地元, 朱泉企, 刘濛, 李夕兵. 含端部裂隙大理岩单轴压缩破坏及能量耗散特性[J]. 工程科学学报, 2020, 42(12): 1588-1596. doi: 10.13374/j.issn2095-9389.2019.12.07.001
引用本文: 韩震宇, 李地元, 朱泉企, 刘濛, 李夕兵. 含端部裂隙大理岩单轴压缩破坏及能量耗散特性[J]. 工程科学学报, 2020, 42(12): 1588-1596. doi: 10.13374/j.issn2095-9389.2019.12.07.001
HAN Zhen-yu, LI Di-yuan, ZHU Quan-qi, LIU Meng, LI Xi-bing. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface[J]. Chinese Journal of Engineering, 2020, 42(12): 1588-1596. doi: 10.13374/j.issn2095-9389.2019.12.07.001
Citation: HAN Zhen-yu, LI Di-yuan, ZHU Quan-qi, LIU Meng, LI Xi-bing. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface[J]. Chinese Journal of Engineering, 2020, 42(12): 1588-1596. doi: 10.13374/j.issn2095-9389.2019.12.07.001

含端部裂隙大理岩单轴压缩破坏及能量耗散特性

doi: 10.13374/j.issn2095-9389.2019.12.07.001
基金项目: 国家自然科学基金资助项目(52074349);湖南省杰出青年科学基金资助项目(2019JJ20028);中南大学创新驱动计划资助项目(2018CX020)
详细信息
    通讯作者:

    E-mail:diyuan.li@csu.edu.cn

  • 中图分类号: TU 45

Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface

More Information
  • 摘要: 对含端部双裂隙ϕ50 mm×50 mm的圆柱体大理岩试样进行单轴压缩试验,并利用高速摄影仪实时记录试样破坏过程,研究了端部裂隙长度和倾角对大理岩力学特性及裂纹扩展规律的影响。研究表明,当裂隙长度达到门槛值前,试样的单轴抗压强度的弱化程度较低,弹性模量、峰值应变的变化较小。相对垂直裂隙,相同长度的倾斜裂隙对大理岩的影响更加显著。试验结果与理论分析均表明,裂纹一般不从端部垂直裂隙尖端起裂,试样的起裂裂纹大多发展为主裂纹,扩展过程中较少产生分支与分叉,试样表面会产生局部剥落,倾斜裂隙试样宏观上呈剪切或拉剪复合破坏,垂直裂隙试样呈劈裂拉伸破坏。试样能耗参数与单轴抗压强度的变化趋势一致,试样总应变能和其单轴抗压强度有较好的正相关关系。最后,比较了动、静载荷作用下含端部裂隙大理岩力学响应与裂纹扩展过程的差异。
  • 图  1  含双裂隙大理岩试样示意图

    Figure  1.  Sketch of marble specimens containing two flaws at the end surfaces

    图  2  试验设备

    Figure  2.  Experimental facilities

    图  3  单轴压缩下标准试样的应力–应变曲线

    Figure  3.  Stress‒strain curve of standard marble specimens under uniaxial compression

    图  4  单轴压缩下含裂隙试样的应力–应变曲线。(a)不同裂隙长度;(b)不同裂隙倾角

    Figure  4.  Stress‒strain curves of flawed marble specimens under uniaxial compression: (a) different flaw lengths; (b) different flaw angles

    图  5  单轴压缩下含裂隙试样的裂纹扩展过程。(a)完整试样;(b) 5 mm, 90°;(c)10 mm,90°;(d)15 mm,90°;(e)15 mm,30°;(f)15 mm, 60°

    Figure  5.  Crack propagation of flawed specimens under uniaxial compression: (a) intact; (b) 5 mm, 90°; (c) 10 mm, 90°; (d) 15 mm, 90°; (e) 15 mm, 30°; (f) 15 mm, 60°

    图  6  垂直裂隙受力示意图

    Figure  6.  Diagram of vertical flaws under uniaxial compression

    图  7  能量耗散与裂隙参数的关系。(a)不同裂隙长度;(b)不同裂隙倾角

    Figure  7.  Relationship between energy parameters and flaw geometries: (a) different flaw lengths; (b) different flaw angles

    图  8  输入能和单轴抗压强度的关系。(a)不同裂隙长度;(b)不同裂隙倾角

    Figure  8.  Relationship between input energy and uniaxial compressive strength: (a) different flaw lengths; (b) different flaw angles

    图  9  能量利用率与裂隙参数的关系。(a)不同裂隙长度;(b)不同裂隙倾角

    Figure  9.  Relationship between energy efficiency and flaw geometries: (a) different flaw lengths; (b) different flaw angles

    表  1  动、静态加载下含裂隙大理岩的力学参数均值[3]

    Table  1.   Mechanical parameters of flawed marble specimens under dynamic and static loads

    Loading typeSpecimenPeak strength/
    MPa
    Elastic modulus/
    GPa
    Peak strain/
    10−2
    Static uniaxial compressionIntact133.405.941.95
    SM–5–90109.295.871.83
    SM–10–90123.275.422.01
    SM–15–3091.825.931.41
    SM–15–60105.045.761.55
    SM–15–90122.365.881.84
    Dynamic loadingDM–15–3097.032.80.40
    DM–15–60129.032.80.52
    DM–15–90204.045.70.46
    Note:S represents the static uniaxial compression test,D represents the dynamic unconfined compression test,M represents marble,5/10/15 is the flaw length,and 30/60/90 is the flaw angle.
    下载: 导出CSV
  • [1] Zou C J, Wong L N Y, Loo J J, et al. Different mechanical and cracking behaviors of single-flawed brittle gypsum specimens under dynamic and quasi-static loadings. Eng Geol, 2016, 201: 71 doi: 10.1016/j.enggeo.2015.12.014
    [2] Li D Y, Han Z Y, Sun X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests. Rock Mech Rock Eng, 2019, 52(6): 1623 doi: 10.1007/s00603-018-1652-5
    [3] 李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究. 岩石力学与工程学报, 2017, 36(12):2872

    Li D Y, Han Z Y, Sun X L, et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests. Chin J Rock Mech Eng, 2017, 36(12): 2872
    [4] Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci, 1998, 35(7): 863 doi: 10.1016/S0148-9062(98)00005-9
    [5] Yang S Q, Dai Y H, Han L J, et al. Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression. Eng Fract Mech, 2009, 76(12): 1833 doi: 10.1016/j.engfracmech.2009.04.005
    [6] 杨圣奇. 断续三裂隙砂岩强度破坏和裂纹扩展特征研究. 岩土力学, 2013, 34(1):31

    Yang S Q. Study of strength failure and crack coalescence behavior of sandstone containing three pre-existing fissures. Rock Soil Mech, 2013, 34(1): 31
    [7] Yang S Q, Huang Y H. Failure behaviour of rock-like materials containing two pre-existing unparallel flaws: an insight from particle flow modeling. Eur J Environ Civil Eng, 2018, 22(Suppl 1): s57
    [8] Huang Y H, Yang S Q, Zeng W. Experimental and numerical study on loading rate effects of rock-like material specimens containing two unparallel fissures. J Cent South Univ, 2016, 23(6): 1474 doi: 10.1007/s11771-016-3200-3
    [9] Liu Y, Dai F, Dong L, et al. Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters. Rock Mech Rock Eng, 2018, 51(1): 47 doi: 10.1007/s00603-017-1327-7
    [10] Liu Y, Dai F, Zhao T, et al. Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression. Rock Mech Rock Eng, 2017, 50(1): 89 doi: 10.1007/s00603-016-1085-y
    [11] Liu Y, Dai F, Fan P X, et al. Experimental investigation of the influence of joint geometric configurations on the mechanical properties of intermittent jointed rock models under cyclic uniaxial compression. Rock Mech Rock Eng, 2017, 50(6): 1453 doi: 10.1007/s00603-017-1190-6
    [12] Li J C, Ma G W, Huang X. Analysis of wave propagation through a filled rock joint. Rock Mech Rock Eng, 2010, 43(6): 789 doi: 10.1007/s00603-009-0033-5
    [13] Li J C, Ma G W, Zhao J. An equivalent viscoelastic model for rock mass with parallel joints. J Geophys Res Solid Earth, 2010, 115(B3): B03305
    [14] Li J C, Ma G W, Zhao J. Analysis of stochastic seismic wave interaction with a slippery rock fault. Rock Mech Rock Eng, 2011, 44(1): 85 doi: 10.1007/s00603-010-0109-2
    [15] Li J C, Li H B, Ma G W, et al. A time-domain recursive method to analyse transient wave propagation across rock joints. Geophys J Int, 2012, 188(2): 631 doi: 10.1111/j.1365-246X.2011.05286.x
    [16] Zhao J, Cai J G. Transmission of elastic P-waves across single fractures with a nonlinear normal deformational behavior. Rock Mech Rock Eng, 2001, 34(1): 3 doi: 10.1007/s006030170023
    [17] Zhao J, Zhao X B, Cai J G. A further study of P-wave attenuation across parallel fractures with linear deformational behaviour. Int J Rock Mech Min Sci, 2006, 43(5): 776 doi: 10.1016/j.ijrmms.2005.12.007
    [18] 杨圣奇, 刘相如, 李玉寿. 单轴压缩下含孔洞裂隙砂岩力学特性试验分析. 岩石力学与工程学报, 2012, 31(增刊2): 3539

    Yang S Q, Liu X R, Li Y S. Experimental analysis of mechanical behavior of sandstone containing hole and fissure under uniaxial compression. Chin J Rock Mech Eng, 2012, 31(Suppl 2): 3539
    [19] 杨圣奇, 苏承东, 徐卫亚. 岩石材料尺寸效应的试验和理论研究. 工程力学, 2005, 22(4):112 doi: 10.3969/j.issn.1000-4750.2005.04.022

    Yang S Q, Su C D, Xu W Y. Experimental and theoretical study of size effect of rock material. Eng Mech, 2005, 22(4): 112 doi: 10.3969/j.issn.1000-4750.2005.04.022
    [20] 刘宝琛, 张家生, 杜奇中, 等. 岩石抗压强度的尺寸效应. 岩石力学与工程学报, 1998, 17(6):611 doi: 10.3321/j.issn:1000-6915.1998.06.001

    Liu B C, Zhang J S, Du Q Z, et al. A study of size effect for compression strength of rock. Chin J Rock Mech Eng, 1998, 17(6): 611 doi: 10.3321/j.issn:1000-6915.1998.06.001
    [21] 靖洪文, 苏海健, 杨大林, 等. 损伤岩样强度衰减规律及其尺寸效应研究. 岩石力学与工程学报, 2012, 31(3):543 doi: 10.3969/j.issn.1000-6915.2012.03.012

    Jing H W, Su H J, Yang D L, et al. Study of strength degradation law of damaged rock sample and its size effect. Chin J Rock Mech Eng, 2012, 31(3): 543 doi: 10.3969/j.issn.1000-6915.2012.03.012
    [22] Li D Y, Han Z Y, Zhu Q Q, et al. Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles. Int J Rock Mech Min Sci, 2019, 117: 162 doi: 10.1016/j.ijrmms.2019.03.011
    [23] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则. 岩石力学与工程学报, 2005, 24(17):3003 doi: 10.3321/j.issn:1000-6915.2005.17.001

    Xie H P, Ju Y, Li LY. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles. Chin J Rock Mech Eng, 2005, 24(17): 3003 doi: 10.3321/j.issn:1000-6915.2005.17.001
    [24] 谢和平, 彭瑞东, 鞠杨, 等. 岩石破坏的能量分析初探. 岩石力学与工程学报, 2005, 24(15):2603 doi: 10.3321/j.issn:1000-6915.2005.15.001

    Xie H P, Peng R D, Ju Y, et al. On energy analysis of rock failure. Chin J Rock Mech Eng, 2005, 24(15): 2603 doi: 10.3321/j.issn:1000-6915.2005.15.001
    [25] 谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析. 岩石力学与工程学报, 2004, 23(21):3565 doi: 10.3321/j.issn:1000-6915.2004.21.001

    Xie H P, Peng R D, Ju Y. Energy dissipation of rock deformation and fracture. Chin J Rock Mech Eng, 2004, 23(21): 3565 doi: 10.3321/j.issn:1000-6915.2004.21.001
    [26] 张萍, 杨春和, 汪虎, 等. 页岩单轴压缩应力–应变特征及能量各向异性. 岩土力学, 2018, 39(6):2106

    Zhang P, Yang C H, Wang H, et al. Stress-strain characteristics and anisotropy energy of shale under uniaxial compression. Rock Soil Mech, 2018, 39(6): 2106
    [27] 李贺. 岩石断裂力学. 重庆: 重庆大学出版社, 1988

    Li H. Rock Fracture Mechanics. Chongqing: Chongqing University Press, 1988
    [28] 褚夫蛟, 刘敦文, 陶明, 等. 基于核磁共振的不同含水状态砂岩动态损伤规律. 工程科学学报, 2018, 40(2):144

    Chu F J, Liu D W, Tao M, et al. Dynamic damage laws of sandstone under different water bearing conditions based on nuclear magnetic resonance. Chin J Eng, 2018, 40(2): 144
    [29] Zhang Q B, Zhao J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min Sci, 2013, 60: 423 doi: 10.1016/j.ijrmms.2013.01.005
    [30] Dai F, Huang S, Xia K W, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng, 2010, 43(6): 65
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1067
  • HTML全文浏览量:  423
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-07
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回