• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属有机骨架(MOFs)/纤维材料用于电阻式气体传感器的研究进展

翟振宇 张秀玲 李从举

翟振宇, 张秀玲, 李从举. 金属有机骨架(MOFs)/纤维材料用于电阻式气体传感器的研究进展[J]. 工程科学学报, 2020, 42(9): 1096-1105. doi: 10.13374/j.issn2095-9389.2019.12.16.006
引用本文: 翟振宇, 张秀玲, 李从举. 金属有机骨架(MOFs)/纤维材料用于电阻式气体传感器的研究进展[J]. 工程科学学报, 2020, 42(9): 1096-1105. doi: 10.13374/j.issn2095-9389.2019.12.16.006
ZHAI Zhen-yu, ZHANG Xiu-ling, LI Cong-ju. Research progress on MOFs/fiber materials for resistive gas sensors[J]. Chinese Journal of Engineering, 2020, 42(9): 1096-1105. doi: 10.13374/j.issn2095-9389.2019.12.16.006
Citation: ZHAI Zhen-yu, ZHANG Xiu-ling, LI Cong-ju. Research progress on MOFs/fiber materials for resistive gas sensors[J]. Chinese Journal of Engineering, 2020, 42(9): 1096-1105. doi: 10.13374/j.issn2095-9389.2019.12.16.006

金属有机骨架(MOFs)/纤维材料用于电阻式气体传感器的研究进展

doi: 10.13374/j.issn2095-9389.2019.12.16.006
基金项目: 国家自然科学基金资助项目(51973015,21274006,51073005);中央高校基本科研业务费专项资金资助项目(06500100);国民核生化灾害防护国家重点实验室基金资助项目(SKLNBC2018-15)
详细信息
    通讯作者:

    E-mail:congjuli@126.com

  • 中图分类号: TG142.71

Research progress on MOFs/fiber materials for resistive gas sensors

More Information
  • 摘要: 总结了将MOFs材料与金属氧化物、纺织品以及碳基导电纤维材料相结合,并在电阻式气体传感器领域的研究与应用。其中金属氧化物结合MOFs过程中,MOFs主要有两个作用:一是作为分散剂提高金属氧化物的分散性;二是利用MOFs本身具有较大的比表面积和大量的活性位点,来提高材料对于气体分子的吸附量和选择性。当纺织品与MOFs结合的过程中,由于纺织品的导电性相对较差,所以需要结合一些导电性及气体选择性较好的MOFs来作为传感器。碳基导电纤维一般具有较好的机械性能和导电性能,因此将其与MOFs材料复合后用于柔性电阻气体传感器具有一定的优势。
  • 图  1  (a)SnO2传感器的制备流程图,插图为煅烧前后的扫描电子显微镜图像对比;(b)比较未负载和负载30% Pd–SnO2对于H2的响应值;(c) PdO@ZnO−WO2纤维的合成工艺图;(d) 350 ℃时PdO@ZnO−WO2对甲苯的传感性能[8, 12]

    Figure  1.  (a) Schematic diagram illustrating the fabrication process of our SnO2 sensor prototypes, the inset shows images of the materials in the as-spun state and after hot-pressing and calcination obtained by confocal microscopy; (b) electrical responses of unloaded and 30% Pd-loaded SnO2 sensors to H2; (c) schematic illustration of the synthetic process of PdO@ZnO−WO2 nanoparticles; (d) sensitivity of PdO@ZnO−WO2 nanoparticles to toluene at 350 ℃[8, 12]

    图  2  (a) PdO@ZnO–SnO2纳米纤维合成工艺示意图;(b) 400 ℃下不同材料对0.1×10−6~5×10−6体积分数丙酮的响应值;(c) Pd@ZnO–WO3纳米纤维的扫描电镜图像,插图为表面放大图像;(d) PdO@ZnO-SnO2的扫描电镜图像[13]

    Figure  2.  (a) Schematic illustration of the synthetic process of PdO@ZnO-SnO2 nanoparticles; (b) Transition of dynamic responses to acetone in the volume fraction range of 0.1×10−6−5.0×10−6 at 400 ℃; (c) SEM images of Pd@ZnO–WO3 nanofibers and magnified image of the material surface; (d) SEM image of PdO@ZnO–SnO2 nanotubes[13]

    图  3  ZnO和ZIF-8/ZnO的传感原理图[14]

    Figure  3.  Schematic illustration of the raw ZnO and ZIF-8/ZnO nanorod sensors[14]

    图  4  (a) Pd@ZnO–WO3纳米纤维在350 ℃下对于不同气体的选择性;(b) PdO@ZnO–SnO2纳米纤维在400 ℃下对于不同气体的选择性;(c) ZnO和ZIF-8/ZnO对于不同气体的选择性[12-14]

    Figure  4.  (a) Selective detection characteristics of Pd@ZnO-WO3 nanofibers toward toluene in the presence of multiple interfering analytes at 350 °C; (b) selective sensing characteristics of PdO@ZnO–SnO2 nanoparticles at 400 ℃; (c) selective of ZnO and ZIF-8/ZnO for different gases[12-14]

    图  5  (a) ZnO@ZIF–CoZn气体传感器的制备原理图;(b) ZnO and ZnO@ ZIF–CoZn的平面图和截面图;(c) ZnO@5 nm ZIF–CoZn对不同体积分数丙酮的响应值,并且在10×10−6体积分数下测试对于不同湿度的响应值[4]

    Figure  5.  (a) Schematic illustration of the preparation of ZnO@ZIF–CoZn gas sensors; (b) plan and cross-sectional views of ZnO and ZnO@ ZIF–CoZn nanowire arrays: (1,3) HRTEM image of pure ZnO and SAED patterns of a single ZnO nanowire (in inset), (2,4) ZnO@15 nm ZIF–CoZn;(c) response–recovery curves of ZnO@5 nm ZIF–CoZn toward acetone of different volume fraction in dry air and 10×10−6 acetone at different relative humidities[4]

    图  6  (a)通过喷墨印刷技术,将HKUST-1合成在柔性基材上;(b) HKUST-1暴露在不同气体前后的对比照片;(c) HKUST-1的扫描电镜图像;(d) HKUST-1对于NH3的传感响应曲线[24]

    Figure  6.  (a) Inkjet printing of SURMOFs onto flexible substrates using a HKUST-1 precursor solution as “ink”; (b) photographs of a dot of HKUST-1 printed onto textiles before and after exposure to different gases; (c) SEM images of a HKUST-1 printed paper fiber; (d) partial reversible adsorption/desorption of NH3 on HKUST-1 film[24]

    图  7  (a)传感器的制备示意图;(b)传感器材料在不同放大倍数下的扫描电子显微镜图像[25]

    Figure  7.  (a) Schematic diagram of sensor preparation; (b) SEM image analysis of sensor material under different magnification[25]

    图  8  (a)校准曲线在体积分数范围为(10~500)×10−6时用于分析物(甲醇,乙醇和异丙醇)的传感器;(b)MIL-53(Cr-Fe)/Ag/CNT三元纳米复合材料的传感机理[29]

    Figure  8.  (a) Calibration curves of the sensors for different analytes (methanol, ethanol, and iso-propanol) in the volume fraction range of (10–500)×10−6; (b) sensing mechanism of the MIL-53(Cr-Fe)/Ag/CNT ternary nanocomposite[29]

    图  9  (a)传感器示意图;0 V (22 ℃)(b),0.7 V (36 ℃) (c)和2.1 V (100 ℃) (d)下传感器的响应和恢复动力学曲线[30]

    Figure  9.  (a) Schematic illustrations of the overall sensing platform; response and recovery kinetics of SWCNT-loaded PdO–Co3O4 HNCs on cPI film toward the Ni/Au-cPI heater at 0 V (22 °C) (b), 0.7 V (36 °C) (c), and 2.1 V (100 °C) (d)[30]

  • [1] Zhao J J, Losego M D, Lemaire P C, et al. Highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition. <italic>Adv Mater Interfaces</italic>, 2014, 1(4): 1400040 doi: 10.1002/admi.201400040
    [2] Koo W T, Jang J S, Kim I D. Metal-organic frameworks for chemiresistive sensors. <italic>Chem</italic>, 2019, 5(8): 1938 doi: 10.1016/j.chempr.2019.04.013
    [3] Alrammouz R, Podlecki J, Abboud P, et al. A review on flexible gas sensors: from materials to devices. <italic>Sensors Actuat A-Phys</italic>, 2018, 284: 209 doi: 10.1016/j.sna.2018.10.036
    [4] Yao M S, Tang W X, Wang G E, et al. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. <italic>Adv Mater</italic>, 2016, 28(26): 5229 doi: 10.1002/adma.201506457
    [5] Zhan S, Li D M, Liang S F, et al. A novel flexible room temperature ethanol gas sensor based on SnO<sub>2</sub> doped poly-diallyldimethylammonium chloride. <italic>Sensors</italic>, 2013, 13(4): 4378 doi: 10.3390/s130404378
    [6] Tonezzer M, Lacerda R G. Zinc oxide nanowires on carbon microfiber as flexible gas sensor. <italic>Physica E</italic>, 2012, 44(6): 1098 doi: 10.1016/j.physe.2010.11.029
    [7] Lin J, Liang F, Lu X Y, et al. Modeling and designing fault-tolerance mechanisms for MPI-based mapreduce data computing framework // 2015 IEEE First International Conference on Big Data Computing Service and Applications. Redwood City, 2015: 176
    [8] Yang D J, Kamienchick I, Youn D Y, et al. Ultrasensitive and highly selective gas sensors based on electrospun SnO<sub>2</sub> nanofibers modified by Pd loading. <italic>Adv Funct Mater</italic>, 2010, 20(24): 4258 doi: 10.1002/adfm.201001251
    [9] Zhang X L, Fan W, Li H, et al. Extending cycling life of lithium–oxygen batteries based on novel catalytic nanofiber membrane and controllable screen-printed method. <italic>J Mater Chem A</italic>, 2018, 6(43): 21458 doi: 10.1039/C8TA07884J
    [10] Zhang X L, Fan W, Zhao S Y, et al. An efficient, bifunctional catalyst for lithium–oxygen batteries obtained through tuning the exterior Co<sup>2+</sup>/Co<sup>3+</sup> ratio of CoO<sub><italic>x</italic></sub> on N-doped carbon nanofibers. <italic>Catal Sci Technol</italic>, 2019, 9(8): 1998 doi: 10.1039/C9CY00477G
    [11] Yang W, Li N W, Zhao S Y, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. <italic>Adv Mater Technol</italic>, 2018, 3(2): 1700241 doi: 10.1002/admt.201700241
    [12] Koo W T, Choi S J, Kim S J, et al. Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on oxide nanofiber scaffold toward superior gas sensors. <italic>J Am Chem Soc</italic>, 2016, 138(40): 13431 doi: 10.1021/jacs.6b09167
    [13] Koo W T, Jang J S, Choi S J, et al. Metal-organic framework templated catalysts: dual sensitization of PdO–ZnO composite on hollow SnO<sub>2</sub> nanotubes for selective acetone sensors. <italic>ACS Appl Mater Interfaces</italic>, 2017, 9(21): 18069 doi: 10.1021/acsami.7b04657
    [14] Wu X N, Xiong S S, Gong Y, et al. MOF–SMO hybrids as a H<sub>2</sub>S sensor with superior sensitivity and selectivity. <italic>Sensors Actuat B</italic>:<italic>Chem</italic>, 2019, 292: 32 doi: 10.1016/j.snb.2019.04.076
    [15] Talin A A, Centrone A, Ford A C, et al. Tunable electrical conductivity in metal-organic framework thin film devices. <italic>Science</italic>, 2014, 343(6166): 66 doi: 10.1126/science.1246738
    [16] Shi J D, Liu S, Zhang L S, et al. Smart textile-integrated microelectronic systems for wearable applications. <italic>Adv Mater</italic>, 2020, 32(5): 1901958 doi: 10.1002/adma.201901958
    [17] Zhang Y Y, Yuan S, Feng X, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. <italic>J Am Chem Soc</italic>, 2016, 138(18): 5785 doi: 10.1021/jacs.6b02553
    [18] Bradshaw D, Garai A, Huo J. Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. <italic>Chem Soc Rev</italic>, 2012, 41(6): 2344 doi: 10.1039/C1CS15276A
    [19] Denny Jr M S, Moreton J C, Benz L, et al. Metal–organic frameworks for membrane-based separations. <italic>Nat Rev Mater</italic>, 2016, 1(12): 16078 doi: 10.1038/natrevmats.2016.78
    [20] López-Maya E, Montoro C, Rodríguez-Albelo L M, et al. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents. <italic>Angew Chem Int Ed</italic>, 2015, 54(23): 6790 doi: 10.1002/anie.201502094
    [21] Liu J X, Wöll C. Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. <italic>Chem Soc Rev</italic>, 2017, 46(19): 5730 doi: 10.1039/C7CS00315C
    [22] Li M Y, Dincă M. Reductive electrosynthesis of crystalline metal-organic frameworks. <italic>J Am Chem Soc</italic>, 2011, 133(33): 12926 doi: 10.1021/ja2041546
    [23] Ozer R R, Hinestroza J P. One-step growth of isoreticular luminescent metal–organic frameworks on cotton fibers. <italic>RSC Adv</italic>, 2015, 5(25): 19400 doi: 10.1039/C5RA90014J
    [24] Zhang J L, Ar D, Yu X J, et al. Patterned deposition of metal-organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution. <italic>Adv Mater</italic>, 2013, 25(33): 4631 doi: 10.1002/adma.201301626
    [25] Smith M K, Mirica K A. Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. <italic>J Am Chem Soc</italic>, 2017, 139(46): 16759 doi: 10.1021/jacs.7b08840
    [26] Hmadeh M, Lu Z, Liu Z, et al. New porous crystals of extended metal-catecholates. <italic>Chem Mater</italic>, 2012, 24(18): 3511 doi: 10.1021/cm301194a
    [27] Sheberla D, Sun L, Blood-Forsythe M A, et al. High electrical conductivity in Ni-3(2, 3, 6, 7, 10, 11-hexaiminotriphenyl-ene)(2), a semiconducting metal-organic graphene analogue. <italic>J Am Chem Soc</italic>, 2014, 136(25): 8859 doi: 10.1021/ja502765n
    [28] Rui K, Wang X S, Du M, et al. Dual-function metal–organic framework-based wearable fibers for gas probing and energy storage. <italic>ACS Appl Mater Interfaces</italic>, 2018, 10(3): 2837 doi: 10.1021/acsami.7b16761
    [29] Ghanbarian M, Zeinali S, Mostafavi A. A novel MIL-53(Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds. <italic>Sensors Actuat B-Chem</italic>, 2018, 267: 381 doi: 10.1016/j.snb.2018.02.138
    [30] Choi S J, Choi H J, Koo W T, et al. Metal-organic framework-templated PdO-Co<sub>3</sub>O<sub>4</sub> nanocubes functionalized by SWCNTs: improved NO<sub>2</sub> reaction kinetics on flexible heating film. <italic>ACS Appl Mater Interfaces</italic>, 2017, 9(46): 40593 doi: 10.1021/acsami.7b11317
  • 加载中
图(9)
计量
  • 文章访问数:  1182
  • HTML全文浏览量:  565
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-16
  • 刊出日期:  2020-09-20

目录

    /

    返回文章
    返回