• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机遥感在矿业领域应用现状及发展态势

王昆 杨鹏 吕文生 诸利一 于广明

王昆, 杨鹏, 吕文生, 诸利一, 于广明. 无人机遥感在矿业领域应用现状及发展态势[J]. 工程科学学报, 2020, 42(9): 1085-1095. doi: 10.13374/j.issn2095-9389.2019.12.18.003
引用本文: 王昆, 杨鹏, 吕文生, 诸利一, 于广明. 无人机遥感在矿业领域应用现状及发展态势[J]. 工程科学学报, 2020, 42(9): 1085-1095. doi: 10.13374/j.issn2095-9389.2019.12.18.003
WANG Kun, YANG Peng, LÜ Wen-sheng, ZHU Li-yi, YU Guang-ming. Current status and development trend of UAV remote sensing applications in the mining industry[J]. Chinese Journal of Engineering, 2020, 42(9): 1085-1095. doi: 10.13374/j.issn2095-9389.2019.12.18.003
Citation: WANG Kun, YANG Peng, LÜ Wen-sheng, ZHU Li-yi, YU Guang-ming. Current status and development trend of UAV remote sensing applications in the mining industry[J]. Chinese Journal of Engineering, 2020, 42(9): 1085-1095. doi: 10.13374/j.issn2095-9389.2019.12.18.003

无人机遥感在矿业领域应用现状及发展态势

doi: 10.13374/j.issn2095-9389.2019.12.18.003
基金项目: 国家自然科学基金资助项目(51774045);“十三五”国家重点研发计划资助项目(2017YFC0804600)
详细信息
    通讯作者:

    E-mail:yangpeng@buu.edu.cn

  • 中图分类号: TD77.1

Current status and development trend of UAV remote sensing applications in the mining industry

More Information
  • 摘要: 无人机遥感技术是融合无人机、遥感传感器、差分定位、通信等技术以实现地理环境信息快速采集处理与应用分析的新兴技术。本文介绍了无人机遥感平台构成、技术现状及工作流程,并通过大量国内外文献调研系统梳理其在矿业领域应用场景与实际案例,结合当前技术供给短板分析发展态势。研究表明:(1)无人机遥感技术具备成本低廉、机动性强、数据采集灵活、时效性强、可重复、高分辨率等无可比拟的优势;(2)当前矿业领域主要应用于露天矿生产管理、尾矿库安全监测、灾害应急救援、矿区环境监测、边坡灾害防治;(3)规范监管、简化操控方式、提升续航时间、改善成果精度、拓展应用场景是技术应用发展趋势。无人机遥感技术在矿业领域具备广阔应用前景,势必成为智慧矿山建设中不可缺少的重要组成部分。
  • 图  1  无人机摄影测量作业常规作业流程

    Figure  1.  General workflow of UAV photogrammetry

    表  1  常见消费级无人机参数

    Table  1.   Specifications of common consumer-grade UAV drones

    TypeProductMass/ kgWingspan/diagonal size/cmBattery capacity/
    (mA·h)
    Surveying sensorMaximum flight endurance/minMaximum speed/ (km·h−1Maximum transmission distance/km
    Fixed-wing UAVFeima F3003.7518042-MP Sony RX1RII camera/oblique module/thermal infrared module9010
    SenseFly eBee Classic0.6996215020-MP S.O.D.A. camera/Sequoia + multispectral sensor/thermal sensor5090.03.0
    TrimbleUX52.50100600024-MP Sony a5100 camera5080.05.0
    PrioriaMaveric1.1674.9Digital camera/thermal infrared camera45–60101.015.0
    WingtraWingtraOne3.70125680042-MP Sony RX1RII camera/multispectral sensor/thermal infrared sensor5557.68.0
    Multi-rotor UAVDJI Phantom 4 Pro/Feima D10001.3935587020-MP 1"CMOS2872.07.0
    DJIInspire 23.4460.5428024-MP Zenmuse X72394.07.0
    YuneecTyphoon
    H Plus
    1.7052540020-MP 1"CMOS2572.01.6
    ParrotANAFI0.32270021-MP 1/2.4" CMOS2555.04.0
    下载: 导出CSV
  • [1] Pajares G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). <italic>Photogramm Eng Remote Sens</italic>, 2015, 81(4): 281 doi: 10.14358/PERS.81.4.281
    [2] 李德仁. 摄影测量与遥感学的发展展望. 武汉大学学报: 信息科学版, 2008, 33(12):1211

    Li D R. Development prospect of photogrammetry and remote sensing. <italic>Geomat Inform Sci Wuhan Univ</italic>, 2008, 33(12): 1211
    [3] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景. 武汉大学学报: 信息科学版, 2014, 39(5):505

    Li D R, Li M. Research advance and application prospect of unmanned aerial vehicle remote sensing system. <italic>Geomat Inform Sci Wuhan Univ</italic>, 2014, 39(5): 505
    [4] Roosevelt C H. Mapping site-level microtopography with real-time kinematic global navigation satellite systems (RTK GNSS) and unmanned aerial vehicle photogrammetry (UAVP). <italic>Open Archaeol</italic>, 2014, 1: 29
    [5] 闫东, 周乃恩. 彩虹无人机系列应用及展望. 软件, 2018, 39(9):117

    Yan D, Zhou N E. The applications and prospects of CH UAV systems. <italic>Comput Eng Software</italic>, 2018, 39(9): 117
    [6] Giordan D, Hayakawa Y, Nex F, et al. The use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management. <italic>Nat Hazards Earth Syst Sci</italic>, 2018, 18(4): 1079 doi: 10.5194/nhess-18-1079-2018
    [7] Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing: a review. <italic>ISPRS J Photogramm Remote Sens</italic>, 2014, 92: 79 doi: 10.1016/j.isprsjprs.2014.02.013
    [8] 李迁. 低空无人机遥感在矿山监测中的应用研究——以赣州稀土矿区为例[学位论文]. 北京: 中国地质大学(北京), 2013

    Li Q. Application of Low-Altitude UAV Remote Sensing in Mine Monitoring [Dissertation]. Beijing: China University of Geosciences (Beijing), 2013
    [9] Xiang J, Chen J P, Sofia G, et al. Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. <italic>Environ Earth Sci</italic>, 2018, 77(6): 220 doi: 10.1007/s12665-018-7383-9
    [10] Chen J P, Li K, Chang K J, et al. Open-pit mining geomorphic feature characterisation. <italic>Int J Appl Earth Observ Geoinform</italic>, 2015, 42: 76 doi: 10.1016/j.jag.2015.05.001
    [11] 张玉侠, 兰鹏涛, 金元春, 等. 无人机三维倾斜摄影技术在露天矿山监测中的实践与探索. 测绘通报, 2017(增刊): 114

    Zhang Y X, Lan P T, Jin Y C, et al. Practice and exploration of unmanned aerial vehicle three-dimensional oblique photogrammetry technology in the monitoring of open pit mines. Bull Surv Mapp, 2017(Suppl): 114
    [12] 许志华, 吴立新, 陈绍杰, 等. 基于无人机影像的露天矿工程量监测分析方法. 东北大学学报: 自然科学版, 2016, 37(1):84

    Xu Z H, Wu L X, Chen S J, et al. Method of engineering volume monitoring and calculation for open-pit mine from UAV images. <italic>J Northeast Univ Nat Sci</italic>, 2016, 37(1): 84
    [13] Esposito G, Mastrorocco G, Salvini R, et al. Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. <italic>Environ Earth Sci</italic>, 2017, 76(3): 103 doi: 10.1007/s12665-017-6409-z
    [14] 杨青山, 范彬彬, 魏显龙, 等. 无人机摄影测量技术在新疆矿山储量动态监测中的应用. 测绘通报, 2015(5):91

    Yang Q S, Fan B B, Wei X L, et al. Research on the application of unmanned aerial vehicle technology in Xinjiang mineral monitoring. <italic>Bull Surv Mapp</italic>, 2015(5): 91
    [15] Raeva P L, Filipova S L, Filipov D G. Volume computation of a stockpile—A study case comparing GPS and UAV measurements in an open pit quarry. <italic>Int Arch Photogram Remote Sens Spatial Inform Sci</italic>, 2016, XLI-B1: 999 doi: 10.5194/isprsarchives-XLI-B1-999-2016
    [16] Tong X H, Liu X F, Chen P, et al. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of Open-Pit Mine Areas. <italic>Remote Sens</italic>, 2015, 7(6): 6635 doi: 10.3390/rs70606635
    [17] 崔志强. 高精度航空物探在重要成矿带资源调查中的应用. 物探与化探, 2018, 42(1):38

    Cui Z Q. The application of the high precision airborne geophysical survey to the investigation of important metallogenic belts. <italic>Geophys Geochem Explor</italic>, 2018, 42(1): 38
    [18] 李飞, 丁志强, 崔志强, 等. CH-3无人机航磁测量系统在我国新疆不同地形区的应用示范. 地质与勘探, 2018, 54(4):735

    Li F, Ding Z Q, Cui Z Q, et al. Application demonstration of the CH-3 UAV-borne magnetic survey system in different terrain areas of Xinjiang. <italic>Geol Explor</italic>, 2018, 54(4): 735
    [19] 王昆, 杨鹏, Hudson-Edwards Karen, 等. 尾矿库溃坝灾害防控现状及发展. 工程科学学报, 2018, 40(5):526

    Wang K, Yang P, Hudson-Edwards K, et al. Status and development for the prevention and management of tailings dam failure accidents. <italic>Chin J Eng</italic>, 2018, 40(5): 526
    [20] Rico M, Benito G, Salgueiro A R, et al. Reported tailings dam failures: a review of the European incidents in the worldwide context. <italic>J Hazard Mater</italic>, 2008, 152(2): 846 doi: 10.1016/j.jhazmat.2007.07.050
    [21] WISE Uranium Project. Chronology of major tailings dam failures (from 1960) [EB/OL]. (2019-10-02) [2019-11-20]. https://www.wise-uranium.org/mdaf.html
    [22] Rauhala A, Tuomela A, Davids C, et al. UAV remote sensing surveillance of a mine tailings impoundment in sub-arctic conditions. <italic>Remote Sens</italic>, 2017, 9(12): 1318 doi: 10.3390/rs9121318
    [23] 王昆. 尾矿库溃坝演进SPH模拟与灾害防控研究[学位论文]. 北京: 北京科技大学, 2019

    Wang K. Research on Slurry Routing SPH Simulation and Hazards Prevention of Tailings Dam Failure [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [24] Fundão Tailings Dam Review Panel. Report on the Immediate Causes of the Failure of the Fundão Dam [EB/OL]. (2016-08-25) [2017-10-01]. http://fundaoinvestigation.com/the-panel-report/
    [25] 贾虎军, 王立娟, 靳晓, 等. 基于无人机航测的尾矿库三维空间数据获取与风险分析. 中国安全生产科学技术, 2018, 14(7):115

    Jia H J, Wang L J, Jin X, et al. Three-dimensional spatial data acquisition and risk analysis of tailings pond based on UAV aerial survey. <italic>J Saf Sci Technol</italic>, 2018, 14(7): 115
    [26] 马国超, 王立娟, 马松, 等. 无人机摄影测量在矿山尾矿库建设规划的应用. 测绘科学, 2018, 43(1):84

    Ma G C, Wang L J, Ma S, et al. Application of UAV photogrammetry in construction planning of mine tailings reservoir. <italic>Sci Surv Mapp</italic>, 2018, 43(1): 84
    [27] Chiabrando F, Sammartano G, Spanò A. A comparison among different optimization levels in 3D multi-sensor models. A test case in emergency context: 2016 Italian earthquake. <italic>Int Arch Photogram Remote Sens Spatial Inform Sci</italic>, 2017, 42-2(W3): 155
    [28] Mavroulis S, Andreadakis E, Spyrou N I, et al. UAV and GIS based rapid earthquake-induced building damage assessment and methodology for EMS-98 isoseismal map drawing: The June 12, 2017 Mw 6.3 Lesvos (Northeastern Aegean, Greece) earthquake. <italic>Int J Disast Risk Reduct</italic>, 2019, 37: 101169 doi: 10.1016/j.ijdrr.2019.101169
    [29] Yamazaki F, Matsuda T, Denda S, et al. Construction of 3D models of buildings damaged by earthquakes using UAV aerial images // Proceedings of the Tenth Pacific Conference Earthquake Engineering Building an Earthquake-Resilient Pacific. Sydney, 2015: 204
    [30] 杨燕, 杜甘霖, 曹起铜. 无人机航测技术在地质灾害应急测绘中的研究与应用——以9.28丽水山体滑坡应急测绘为例. 测绘通报, 2017(增刊): 119

    Yang Y, Du G L, Cao Q T, Application of UAV aerial surveying technology in geological disaster emergency mapping. Bull Surv Mapp, 2017(Suppl): 119
    [31] 臧克, 孙永华, 李京, 等. 微型无人机遥感系统在汶川地震中的应用. 自然灾害学报, 2010, 19(3):162

    Zang K, Sun Y H, Li J, et al. Application of miniature unmanned aerial vehicle remote sensing system to Wenchuan earthquake. <italic>J Nat Disast</italic>, 2010, 19(3): 162
    [32] 黄瑞金, 沈富强, 周兴霞, 等. 无人机集群灾情地理信息获取关键技术及重大应用. 测绘通报, 2019(6):96

    Huang R J, Shen F Q, Zhou X X, et al. The key technology of disaster geographic information acquisition in UAV cluster and major applications. <italic>Bull Surv Mapp</italic>, 2019(6): 96
    [33] 李明龙, 杨文婧, 易晓东, 等. 面向灾难搜索救援场景的空地协同无人群体任务规划研究. 机械工程学报, 2019, 55(11):1 doi: 10.3901/JME.2019.11.001

    Li M L, Yang W J, Yi X D, et al. Swarm robot task planning based on air and ground coordination for disaster search and rescue. <italic>J Mech Eng</italic>, 2019, 55(11): 1 doi: 10.3901/JME.2019.11.001
    [34] Boccardo P, Chiabrando F, Dutto F, et al. UAV deployment exercise for mapping purposes: evaluation of emergency response applications. <italic>Sensors</italic>, 2015, 15(7): 15717 doi: 10.3390/s150715717
    [35] 杨海军, 李营, 朱海涛, 等. 无人机遥感技术在环境保护领域的应用. 高技术通讯, 2015, 25(6):607

    Yang H J, Li Y, Zhu H T, et al. UAV remote sensing’s application in the environmental protection field. <italic>Chin High Technol Lett</italic>, 2015, 25(6): 607
    [36] 高冠杰, 侯恩科, 谢晓深, 等. 基于四旋翼无人机的宁夏羊场湾煤矿采煤沉陷量监测. 地质通报, 2018, 37(12):2264

    Gao G J, Hou E K, Xie X S, et al. The monitoring of ground surface subsidence related to coal seams mining in Yangchangwan coal mine by means of unmanned aerial vehicle with quad-rotors. <italic>Geol Bull China</italic>, 2018, 37(12): 2264
    [37] 侯恩科, 首召贵, 徐友宁, 等. 无人机遥感技术在采煤地面塌陷监测中的应用. 煤田地质与勘探, 2017, 45(6):102

    Hou E K, Shou Z G, Xu Y N, et al. Application of UAV remote sensing technology in monitoring of coal mining-induced subsidence. <italic>Coal Geol Explor</italic>, 2017, 45(6): 102
    [38] 肖武, 陈佳乐, 笪宏志, 等. 基于无人机影像的采煤沉陷区玉米生物量反演与分析. 农业机械学报, 2018, 49(8):169

    Xiao W, Chen J L, Da H Z, et al. Inversion and analysis of maize biomass in coal mining subsidence area based on UAV images. <italic>Trans Chin Soc Agric Mach</italic>, 2018, 49(8): 169
    [39] 魏长婧, 汪云甲, 王坚, 等. 无人机影像提取矿区地裂缝信息技术研究. 金属矿山, 2012(10):90

    Wei C J, Wang Y J, Wang J, et al. The technical research of extracting ground fissure information in mining area with the UAV image. <italic>Met Mine</italic>, 2012(10): 90
    [40] 杨超, 苏正安, 马菁, 等. 基于无人机影像快速估算矿山排土场边坡土壤侵蚀速率的方法. 水土保持通报, 2016, 36(6):126

    Yang C, Su Z A, Ma J, et al. Method of soil erosion rate estimation on mineland dump slope based on unmanned aerial vehicle image. <italic>Bull Soil Water Conserv</italic>, 2016, 36(6): 126
    [41] 赵星涛, 胡奎, 卢晓攀, 等. 无人机低空航摄的矿山地质灾害精细探测方法. 测绘科学, 2014, 39(6):49

    Zhao X T, Hu K, Lu X P, et al. Precise detection method for mine geological disasters using low-altitude photogrammetry based on unmanned aerial vehicle. <italic>Sci Surv Mapp</italic>, 2014, 39(6): 49
    [42] D'Oleire-Oltmanns S, Marzolff I, Peter K D, et al. Unmanned aerial vehicle (UAV) for monitoring soil erosion in morocco. <italic>Remote Sens</italic>, 2012, 4(11): 3390 doi: 10.3390/rs4113390
    [43] 何原荣, 陈鉴知, 林泉, 等. 航拍影像与点云数据在矿区生态修复中的应用. 中南林业科技大学学报, 2017, 37(4):79

    He Y R, Chen J Z, Lin Q, et al. Applications in the mining ecological restoration based on aerial imaging and point cloud data. <italic>J Cent South Univ Forest Technol</italic>, 2017, 37(4): 79
    [44] Hassan-Esfahani L, Torres-Rua A, Jensen A, et al. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. <italic>Remote Sens</italic>, 2015, 7(3): 2627 doi: 10.3390/rs70302627
    [45] Tofani V, Segoni S, Agostini A, et al. Use of remote sensing for landslide studies in Europe. <italic>Nat Hazards Earth Syst Sci</italic>, 2013, 13(2): 299 doi: 10.5194/nhess-13-299-2013
    [46] Casagli N, Frodella W, Morelli S, et al. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. <italic>Geoenviron Disast</italic>, 2017, 4(1): 9 doi: 10.1186/s40677-017-0073-1
    [47] Rossi G, Tanteri L, Tofani V, et al. Multitemporal UAV surveys for landslide mapping and characterization. <italic>Landslides</italic>, 2018, 15(5): 1045 doi: 10.1007/s10346-018-0978-0
    [48] Balek J, Blahůt J. A critical evaluation of the use of an inexpensive camera mounted on a recreational unmanned aerial vehicle as a tool for landslide research. <italic>Landslides</italic>, 2017, 14(3): 1217 doi: 10.1007/s10346-016-0782-7
    [49] Mateos R M, Azanon J M, Roldan F J, et al. The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). <italic>Landslides</italic>, 2017, 14(2): 743 doi: 10.1007/s10346-016-0723-5
    [50] Turner D, Lucieer A, De Jong S M. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). <italic>Remote Sens</italic>, 2015, 7(2): 1736 doi: 10.3390/rs70201736
    [51] Peternel T, Kumelj Š, Oštir K, et al. Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. <italic>Landslides</italic>, 2017, 14(1): 395 doi: 10.1007/s10346-016-0759-6
    [52] Niethammer U, James M R, Rothmund S, et al. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. <italic>Eng Geol</italic>, 2012, 128: 2 doi: 10.1016/j.enggeo.2011.03.012
    [53] Giordan D, Manconi A, Tannant D D, et al. UAV: Low-cost remote sensing for high-resolution investigation of landslides // 2015 <italic>IEEE International Geoscience and Remote Sensing Symposium</italic> (<italic>IGARSS</italic>). <italic>Milan</italic>, 2015: 5344
    [54] 唐尧, 王立娟, 马国超, 等. 基于“高分+”的金沙江滑坡灾情监测与应用前景分析. 武汉大学学报: 信息科学版, 2019, 44(7):1082

    Tang Y, Wang L J, Ma G C, et al. Disaster monitoring and application prospect analysis of the Jinsha River landslide based on “Gaofen+”. <italic>Geomat Inform Sci Wuhan Univ</italic>, 2019, 44(7): 1082
    [55] 叶伟林, 宿星, 魏万鸿, 等. 无人机航测系统在滑坡应急中的应用. 测绘通报, 2017(9):70

    Ye W L, Su X, Wei W H, et al. Application of UAV aerial photograph system in emergency rescue and relief for landslide. <italic>Bull Surv Mapp</italic>, 2017(9): 70
    [56] 李维炼, 朱军, 朱秀丽, 等. 无人机遥感数据支持下滑坡VR场景探索分析方法. 武汉大学学报: 信息科学版, 2019, 44(7):1065

    Li W L, Zhu J, Zhu X L, et al. An exploratory analysis method of VR scene in landslide based on UAV remote sensing data. <italic>Geomat Inform Sci Wuhan Univ</italic>, 2019, 44(7): 1065
    [57] 贾曙光, 金爱兵, 赵怡晴. 无人机摄影测量在高陡边坡地质调查中的应用. 岩土力学, 2018, 39(3):1130

    Jia S G, Jin A B, Zhao Y Q. Application of UAV oblique photogrammetry in the field of geology survey at the high and steep slope. <italic>Rock Soil Mech</italic>, 2018, 39(3): 1130
    [58] McLeod T, Samson C, Labrie M, et al. Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-pit mine. <italic>Geomatica</italic>, 2013, 67(3): 173 doi: 10.5623/cig2013-036
    [59] 王栋, 邹杨, 张广泽, 等. 无人机技术在超高位危岩勘查中的应用. 成都理工大学学报: 自然科学版, 2018, 45(6):754

    Wang D, Zou Y, Zhang G Z, et al. Application of photographic technique by unmanned aerial vehicle to dangerous rock exploration. <italic>J Chengdu Univ Technol Sci Technol Ed</italic>, 2018, 45(6): 754
    [60] 梁鑫, 范文, 苏艳军, 等. 秦岭钒矿集中开采区隐蔽性地质灾害早期识别研究. 灾害学, 2019, 34(1):208

    Liang X, Fan W, Su Y J, et al. Study on early identification technology of concealed geological hazards in vanadium mining area of Qinling. <italic>J Catastrophol</italic>, 2019, 34(1): 208
    [61] Lee S, Choi Y. Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry. <italic>Geosyst Eng</italic>, 2016, 19(4): 197 doi: 10.1080/12269328.2016.1162115
    [62] Coops N C, Goodbody T R H, Cao L. Four steps to extend drone use in research. <italic>Nature</italic>, 2019, 572(7770): 433 doi: 10.1038/d41586-019-02474-y
    [63] UAV Coach. Master list of drone laws (organized by state & country) [EB/OL]. (2019-08-21) [2019-09-04]. https://uavcoach.com/drone-laws/
    [64] Sanz-Ablanedo E, Chandler J H, Rodríguez-Pérez J R, et al. Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. <italic>Remote Sens</italic>, 2018, 10(10): 1606 doi: 10.3390/rs10101606
    [65] Beretta F, Shibata H, Cordova R, et al. Topographic modelling using UAVs compared with traditional survey methods in mining. <italic>REM-Int Eng J</italic>, 2018, 71: 463 doi: 10.1590/0370-44672017710074
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  658
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 刊出日期:  2020-09-20

目录

    /

    返回文章
    返回