• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金属有机框架材料设计合成锂离子电池电极材料的研究进展

鲁建豪 薛杉杉 连芳

鲁建豪, 薛杉杉, 连芳. 基于金属有机框架材料设计合成锂离子电池电极材料的研究进展[J]. 工程科学学报, 2020, 42(5): 527-539. doi: 10.13374/j.issn2095-9389.2019.12.29.001
引用本文: 鲁建豪, 薛杉杉, 连芳. 基于金属有机框架材料设计合成锂离子电池电极材料的研究进展[J]. 工程科学学报, 2020, 42(5): 527-539. doi: 10.13374/j.issn2095-9389.2019.12.29.001
LU Jian-hao, XUE Shan-shan, LIAN Fang. Research progress of MOFs-derived materials as the electrode for lithium–ion batteries — a short review[J]. Chinese Journal of Engineering, 2020, 42(5): 527-539. doi: 10.13374/j.issn2095-9389.2019.12.29.001
Citation: LU Jian-hao, XUE Shan-shan, LIAN Fang. Research progress of MOFs-derived materials as the electrode for lithium–ion batteries — a short review[J]. Chinese Journal of Engineering, 2020, 42(5): 527-539. doi: 10.13374/j.issn2095-9389.2019.12.29.001

基于金属有机框架材料设计合成锂离子电池电极材料的研究进展

doi: 10.13374/j.issn2095-9389.2019.12.29.001
基金项目: 国家自然科学基金资助项目(51872026);北京市自然科学基金资助项目(2202027)
详细信息
    通讯作者:

    E-mail: lianfang@mater.ustb.edu.cn

  • 中图分类号: O61

Research progress of MOFs-derived materials as the electrode for lithium–ion batteries — a short review

More Information
  • 摘要: 金属有机框架材料 (Metal-organic frameworks,MOFs)是一种新颖的多孔晶体材料,具有比表面积大、孔隙率高、结构可设计性强等优点,但是,MOFs的低电导率以及在电解液中的稳定性等问题限制了其作为电极材料的应用。近年来,如何结合MOFs的优势进行锂离子电池电极材料的设计与合成受到了越来越多的关注。目前,通过自牺牲得到的多孔碳骨架和金属化合物等MOFs衍生复合电极材料,不仅解决了电导率低的问题,而且保留了MOFs的高比表面积和复杂多孔结构,为锂离子的插入/脱出、吸附/解吸等过程提供了丰富的活性位点;与此同时,从结构单元和化学组成方面增加了材料结构的复杂性,开放性的孔隙结构可以缓冲体积膨胀带来的机械应力,对外来离子存储和多离子传输具有重要的意义。本文综述了MOFs及其衍生物在锂离子电池电极材料的设计和研究中取得的最新进展,重点阐述了针对锂离子电池电极材料的要求进行MOFs形貌控制和修饰的方法,以及具有多孔、中空或特殊结构的MOFs衍生电极材料的制备关键影响因素及其结构特性对电化学性能的影响。最后,分析了MOFs衍生电极材料的研究挑战和发展方向。
  • 图  1  本综述主要内容的示意图,主要包括具有多孔、中空及特殊结构的MOFs衍生锂离子电池电极材料

    Figure  1.  Schematic of the main contents of the review, including porous, hollow, and complicated construction of electrode materials derived from MOFs

    图  2  不同尺寸的联吡啶基有机配体合成金属有机框架的示意图(a)[18];ZIF−8经过溶剂辅助更换配体后孔径扩张示意图(b)[20];利用不同热稳定性的连接体制备HP−UiO−66的示意图(c)(A~J代表着不同配体的热稳定性)[21]

    Figure  2.  Schematic diagram (a) of the synthesis of metal organic frames using different sizes of bipyridyl organic ligands[18]; aperture expansion in ZIF−8 via solvent-assisted linker exchange (b)[20]; versatility of linker thermolysis to construct HP−UiO−66 using various linkers (c) (A–J showing different thermal stability)[21]

    图  3  根据LaMer模型的MOFs形核和生长的示意图[25]

    Figure  3.  Schematic of MOFs nucleation and growth according to the LaMer model[25]

    图  4  具有丰富氮掺杂的ZIF−8衍生碳粒中额外锂离子存储机理示意图(a)[36];MIL−88−Fe的扫描电镜图,合成纺锤状多孔α-Fe2O3的流程图,以及在200 mA·g−1电流密度下纺锤状多孔α-Fe2O3和块状Fe2O3循环性能对比(嵌入图)(b)[46];合成CoxP−NC多面体的流程示意图,以及CoxP−NC−700, CoxP−NC−800和CoxP−NC−900电极材料倍率性能的对比图(c)[47]

    Figure  4.  Schematic representation (a) of extra Li storage in N-doped ZIF−8 derived carbon particles[36]; SEM image of as-prepared MIL−88−Fe, the illustration of the fabrication of spindle-like porous α-Fe2O3, and comparative cycling performance of the final spindle-like α-Fe2O3 and bulk Fe2O3 at 200 mA·g−1 (inset) (b)[46]; Schematic illustration of the formation of CoxP−NC polyhedra, and rate performance of the CoxP−NC−700, CoxP−NC−800 and CoxP−NC−900 electrodes at different rate current densities (c)[47]

    图  5  交织异质结构示意图,Co3O4−C@FeOOH交织中空多面体结构的形成过程,以及微观形貌和循环性能对比图(a)[56];NiO/Ni/石墨烯复合材料合成示意图,以及NiO/Ni/石墨烯复合材料的扫描电镜图(b)[59]

    Figure  5.  Schematic of interwoven heterostructure, schematic showing the formation process of crystalline–amorphous Co3O4/FeOOH interwoven hollow polyhedrons structure, and SEM image and cycling performance (a)[56]; Schematic of the formation of NiO/Ni/Graphene composites, and SEM images of NiO/Ni/Graphene composite (b)[59]

    图  6  铁基MOFs及其衍生的Fe2O3纳米结构的扫描电镜图像(a)[68];3D中空CoS@PCP/CNTs的合成示意图,以及0.3‒10 A·g−1不同电流密度下CoS@PCP/CNTs的放电比容量(b)[69]

    Figure  6.  SEM images (a) of Fe-based MOFs and their derived Fe2O3 nanostructures[68]; schematic for the formation of 3D hollow CoS@PCP/CNTs, and rate capabilities of CoS@PCP/CNTs at various current densities between 0.3 and 10 A·g−1 (b)[69]

    表  1  热解后得到的MOFs材料HP−UiO−66的孔隙参数[21]

    Table  1.   Porosity parameters of HP−UiO−66 created by linker thermolysis[21]

    SampleSBET/(cm3·g−1)Dmeso/nmV(meso)/V(micro)
    HP−UiO−66−AD10229.80.83
    HP−UiO−66−BD10127.50.60
    HP−UiO−66−CD8257.20.82
    HP−UiO−66−AE7025.50.79
    HP−UiO−66−AF5716.01.00
    HP−UiO−67−GH218514.80.66
    下载: 导出CSV

    表  2  几种以MOFs为前驱体制备的多孔纳米碳基电极材料

    Table  2.   Some porous carbon-based electrode nanomaterials prepared using MOFs

    SamplePrecursorSBET/(m2·g−1)Temperature/℃AtmosphereReference
    NPCZIF−67547800N2[38]
    N−NPCZn−MOF31251000Vacuum[37]
    N−NPCZIF−7783950Ar[39]
    N−NPCZIF−834051000Ar[40]
    N−CNTZn−Fe−ZIF152900N2[41]
    下载: 导出CSV

    表  3  几种以MOFs为前驱体制备的多孔金属化合物或金属化合物/碳复合电极材料

    Table  3.   Some porous metal compounds or metal compound/carbon composite electrode materials prepared using MOFs

    SamplePrecursorCapacity/(mA·h·g−1)Cycle numberVoltage / (V vs Li/Li+)Reference
    Co3O4ZIF−6717351500.01−3[48]
    Fe2O3@ CFe−ZIF1696500.01−3[49]
    Cr2O3@TiO2MIL−10111385000.05−3[50]
    Fe3CMIL−1009041000.01−3[51]
    Sn@CSn−MOF12251000.05−2[52]
    下载: 导出CSV

    表  4  几种以MOFs为前驱体制备的具有中空结构的复合电极材料

    Table  4.   Some hollow composite electrode materials prepared using MOFs

    SamplePrecursorCapacity/(mA·h·g−1)Cycle numberVoltage / (V vs Li/Li+)Current density /(mA·g−1)Reference
    Multishell microsphere Co3O4@CNi/Co−MOF1701600.01‒3100[60]
    CoSe@C nanoboxesZIF−677871000.01‒3200[61]
    Hollow CoS2ZIF−8/67549.92000.01‒31000[62]
    Hollow Fe2O3/SnO2PB5001000.05‒3200[63]
    Double-Shelled Nanocages CH@LDHZIF−676531000.01‒365[64]
    Microboxes Fe2O3PB950300.01‒3200[65]
    Nanobubble Hollow CoS2ZIF−677372000.05‒31000[66]
    Nanobowls CMS/NSCNB218.682400.01‒2.55000[67]
    下载: 导出CSV
  • [1] Auvergniot J, Cassel A, Ledeuil J B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem Mater, 2017, 29(9): 3883 doi: 10.1021/acs.chemmater.6b04990
    [2] Gong Y, Zhang J N, Jiang L W, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery. J Am Chem Soc, 2017, 139(12): 4274 doi: 10.1021/jacs.6b13344
    [3] Konarov A, Myung S T, Sun Y K. Cathode materials for future electric vehicles and energy storage systems. ACS Energy Lett, 2017, 2(3): 703 doi: 10.1021/acsenergylett.7b00130
    [4] Tron A, Jo Y N, Oh S H, et al. Surface modification of the LiFePO4 cathode for the aqueous rechargeable lithium ion battery. ACS Appl Mater Interfaces, 2017, 9(14): 12391 doi: 10.1021/acsami.6b16675
    [5] Capasso C, Veneri O. Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles. Appl Energy, 2014, 136: 921 doi: 10.1016/j.apenergy.2014.04.013
    [6] Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries. Energy Environ Sci, 2010, 3(2): 174 doi: 10.1039/B916098A
    [7] Bruce P G, Freunberger S A, Hardwick L J, et al. Li‒O2 and Li‒S batteries with high energy storage. Nat Mater, 2012, 11: 19 doi: 10.1038/nmat3191
    [8] Zhu Z Q, Wang S W, Du J, et al. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett, 2014, 14(1): 153 doi: 10.1021/nl403631h
    [9] Sacci R L, Lehmann M L, Diallo S O, et al. Lithium transport in an amorphous LixSi anode investigated by quasi-elastic neutron scattering. J Phys Chem C, 2017, 121(21): 11083 doi: 10.1021/acs.jpcc.7b01133
    [10] Lü X X, Deng J J, Wang B Q, et al. γ-Fe2O3@ CNTs anode materials for lithium ion batteries investigated by electron energy loss spectroscopy. Chem Mater, 2017, 29(8): 3499 doi: 10.1021/acs.chemmater.6b05356
    [11] Jiang T C, Bu F X, Feng X X, et al. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano, 2017, 11(5): 5140 doi: 10.1021/acsnano.7b02198
    [12] Zhou J W, Wang B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem Soc Rev, 2017, 46(22): 6927 doi: 10.1039/C7CS00283A
    [13] Howarth A J, Liu Y Y, Li P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat Rev Mater, 2016, 1: 15018 doi: 10.1038/natrevmats.2015.18
    [14] Hu L, Chen Q. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale, 2014, 6(3): 1236 doi: 10.1039/C3NR05192G
    [15] Chen L Y, Luque R, Li Y W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem Soc Rev, 2017, 46(15): 4614 doi: 10.1039/C6CS00537C
    [16] Kim D, Coskun A. Template-directed approach towards the realization of ordered heterogeneity in bimetallic metal-organic frameworks. Angew Chem Int Ed Engl, 2017, 56(18): 5071 doi: 10.1002/anie.201702501
    [17] An T C, Wang Y H, Tang J, et al. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage. J Colloid Interface Sci, 2015, 445: 320 doi: 10.1016/j.jcis.2015.01.012
    [18] Weston M H, Delaquil A A, Sarjeant A A, et al. Tuning the hydrophobicity of zinc dipyridyl paddlewheel metal-organic frameworks for selective sorption. Cryst Growth Des, 2013, 13(7): 2938 doi: 10.1021/cg400342m
    [19] Kirchon A, Feng L, Drake H F, et al. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev, 2018, 47(23): 8611 doi: 10.1039/C8CS00688A
    [20] Karagiaridi O, Lalonde M B, Bury W, et al. Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J Am Chem Soc, 2012, 134(45): 18790 doi: 10.1021/ja308786r
    [21] Feng L, Yuan S, Zhang L L, et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J Am Chem Soc, 2018, 140(6): 2363 doi: 10.1021/jacs.7b12916
    [22] Yec C C, Zeng H C. Synthesis of complex nanomaterials via Ostwald ripening. J Mater Chem A, 2014, 2(14): 4843 doi: 10.1039/C3TA14203E
    [23] Cui Y J, Li B, He H J, et al. Metal-organic frameworks as platforms for functional materials. Acc Chem Res, 2016, 49(3): 483 doi: 10.1021/acs.accounts.5b00530
    [24] Wang S Z, McGuirk C M, d'Aquino A, et al. Metal-organic framework nanoparticles. Adv Mater, 2018, 30(37): 1800202 doi: 10.1002/adma.201800202
    [25] LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc, 1950, 72(11): 4847 doi: 10.1021/ja01167a001
    [26] Banerjee A, Upadhyay K K, Puthusseri D, et al. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs). Nanoscale, 2014, 6(8): 4387 doi: 10.1039/c4nr00025k
    [27] Fang G Z, Zhou J, Liang C W, et al. MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy, 2016, 26: 57 doi: 10.1016/j.nanoen.2016.05.009
    [28] Salunkhe R R, Kaneti Y V, Yamauchi Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano, 2017, 11(6): 5293 doi: 10.1021/acsnano.7b02796
    [29] Liu Y S, Shen H B, Jiang H, et al. ZIF-derived graphene coated/Co9S8 nanoparticles embedded in nitrogen doped porous carbon polyhedrons as advanced catalysts for oxygen reduction reaction. Int J Hydrogen Energy, 2017, 42(18): 12978 doi: 10.1016/j.ijhydene.2017.04.050
    [30] Zhang Y F, Pan A Q, Wang Y P, et al. Dodecahedron-shaped porous vanadium oxide and carbon composite for high-rate lithium ion batteries. ACS Appl Mater Interfaces, 2016, 8(27): 17303 doi: 10.1021/acsami.6b04866
    [31] Xie Z Q, Xu W W, Cui X D, et al. Recent progress in metal-organic frameworks and their derived nanostructures for energy and environmental applications. ChemSusChem, 2017, 10(8): 1645 doi: 10.1002/cssc.201601855
    [32] Zhang W, Jiang X F, Zhao Y Y, et al. Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chem Sci, 2017, 8(5): 3538 doi: 10.1039/C6SC04903F
    [33] Hu Z W, Zhang Z P, Li Z L, et al. One-step conversion from core-shell metal-organic framework materials to cobalt and nitrogen codoped carbon nanopolyhedra with hierarchically porous structure for highly efficient oxygen reduction. ACS Appl Mater Interfaces, 2017, 9(19): 16109 doi: 10.1021/acsami.7b00736
    [34] Jiang Y, Liu H Q, Tan X H, et al. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries. ACS Appl Mater Interfaces, 2017, 9(30): 25239 doi: 10.1021/acsami.7b04432
    [35] Leyssale J M, Vignoles G L. Molecular dynamics evidences of the full graphitization of a nanodiamond annealed at 1500 K. Chem Phys Lett, 2008, 454(4-6): 299 doi: 10.1016/j.cplett.2008.02.025
    [36] Zheng F C, Yang Y, Chen Q W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun, 2014, 5: 5261 doi: 10.1038/ncomms6261
    [37] Li A, Tong Y, Cao B, et al. MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Sci Rep, 2017, 7: 40574 doi: 10.1038/srep40574
    [38] Guo Y Y, Zeng X Q, Zhang Y, et al. Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries. ACS Appl Mater Interfaces, 2017, 9(20): 17172 doi: 10.1021/acsami.7b04561
    [39] Zhang P, Sun F, Xiang Z H, et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ Sci, 2014, 7(1): 442 doi: 10.1039/C3EE42799D
    [40] Jiang H L, Liu B, Lan Y Q, et al. From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc, 2011, 133(31): 11854 doi: 10.1021/ja203184k
    [41] Su P P, Xiao H, Zhao J, et al. Nitrogen-doped carbon nanotubes derived from Zn-Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chem Sci, 2013, 4(7): 2941 doi: 10.1039/c3sc51052b
    [42] Lu J H, Lian F, Guan L L, et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages. J Mater Chem A, 2019, 7(3): 991 doi: 10.1039/C8TA09955C
    [43] Tao S, Huang W F, Xie H, et al. Formation of graphene-encapsulated CoS2 hybrid composites with hierarchical structures for high-performance lithium-ion batteries. RSC Adv, 2017, 7(63): 39427
    [44] Yang W F, Wang J W, Ma W S, et al. Free-standing CuO nanoflake arrays coated Cu foam for advanced lithium ion battery anodes. J Power Sources, 2016, 333: 88 doi: 10.1016/j.jpowsour.2016.09.154
    [45] Hua X, Liu Z, Fischer M G, et al. Lithiation thermodynamics and kinetics of the TiO2(B) nanoparticles. J Am Chem Soc, 2017, 139(38): 13330 doi: 10.1021/jacs.7b05228
    [46] Xu X D, Cao R G, Jeong S, et al. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett, 2012, 12(9): 4988 doi: 10.1021/nl302618s
    [47] Xia G L, Su J W, Li M S, et al. A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. J Mater Chem A, 2017, 5(21): 10321 doi: 10.1039/C7TA02600E
    [48] Shao J, Wan Z M, Liu H M, et al. Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J Mater Chem A, 2014, 2(31): 12194 doi: 10.1039/C4TA01966K
    [49] Zheng F C, He M N, Yang Y, et al. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Nanoscale, 2015, 7(8): 3410 doi: 10.1039/C4NR06321J
    [50] Wang B X, Wang Z Q, Cui Y J, et al. Cr2O3@TiO2 yolk/shell octahedrons derived from a metal-organic framework for high-performance lithium-ion batteries. Microporous Mesoporous Mater, 2015, 203: 86 doi: 10.1016/j.micromeso.2014.10.026
    [51] Tan Y L, Zhu K, Li D, et al. N-doped graphene/Fe-Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem Eng J, 2014, 258: 93 doi: 10.1016/j.cej.2014.07.066
    [52] Shiva K, Jayaramulu K, Rajendra H B, et al. In-situ stabilization of tin nanoparticles in porous carbon matrix derived from metal organic framework: high capacity and high rate capability anodes for lithium-ion batteries. Zeitschrift für anorganische und allgemeine Chemie, 2014, 640(6): 1115 doi: 10.1002/zaac.201300621
    [53] Guo H, Li T, Chen W, et al. General design of hollow porous CoFe2O4 nanocubes from metal-organic frameworks with extraordinary lithium storage. Nanoscale, 2014, 6(24): 15168 doi: 10.1039/C4NR04422C
    [54] Huang G, Zhang F F, Zhang L L, et al. Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A, 2014, 2(21): 8048 doi: 10.1039/C4TA00200H
    [55] Zheng F C, Zhu D Q, Shi X H, et al. Metal-organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. J Mater Chem A, 2015, 3(6): 2815 doi: 10.1039/C4TA06150K
    [56] Xu W W, Xie Z Q, Wang Z, et al. Interwoven heterostructural Co3O4-carbon@FeOOH hollow polyhedrons with improved electrochemical performance. J Mater Chem A, 2016, 4(48): 19011 doi: 10.1039/C6TA08217C
    [57] Fang G Z, Wu Z X, Zhou J, et al. Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv Energy Mater, 2018, 8(19): 1703155 doi: 10.1002/aenm.201703155
    [58] Wang X, Chen Y, Fang Y J, et al. Synthesis of cobalt sulfide multi-shelled nanoboxes with precisely controlled two to five shells for sodium-ion batteries. Angew Chem Int Ed, 2019, 58(9): 2675 doi: 10.1002/anie.201812387
    [59] Zou F, Chen Y M, Liu K W, et al. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano, 2015, 10(1): 377
    [60] Ding Y C, Hu L H, He D C, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chem Eng J, 2020, 380: 122489 doi: 10.1016/j.cej.2019.122489
    [61] Hu H, Zhang J T, Guan B Y, et al. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew Chem, 2016, 128(33): 9666 doi: 10.1002/ange.201603852
    [62] Wang J L, Wang J W, Han L F, et al. Fabrication of an anode composed of a N, S co-doped carbon nanotube hollow architecture with CoS2 confined within: toward Li and Na storage. Nanoscale, 2019, 11(43): 20996 doi: 10.1039/C9NR07767G
    [63] Zhang L, Wu H B, Lou X W. MOFs-derived general formation of hollow structures with high complexity. J Am Chem Soc, 2013, 135(29): 10664 doi: 10.1021/ja401727n
    [64] Zhang J T, Hu H, Li Z, et al. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew Chem Int Ed, 2016, 55(12): 3982 doi: 10.1002/anie.201511632
    [65] Zhang L, Wu H B, Madhavi S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc, 2012, 134(42): 17388 doi: 10.1021/ja307475c
    [66] Yu L, Yang J F, Lou X W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew Chem Int Ed, 2016, 55(43): 13422 doi: 10.1002/anie.201606776
    [67] Li P H, Yang Y, Gong S, et al. Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Res, 2019, 12(9): 2218 doi: 10.1007/s12274-018-2250-2
    [68] Guo W X, Sun W W, Lü L P, et al. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano, 2017, 11(4): 4198 doi: 10.1021/acsnano.7b01152
    [69] Wu R B, Wang D P, Rui X H, et al. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv Mater, 2015, 27(19): 3038 doi: 10.1002/adma.201500783
    [70] Zhang H, Wang Y S, Zhao W Q, et al. MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for Lithium-ion battery anodes. ACS Appl Mater Interfaces, 2017, 9(43): 37813 doi: 10.1021/acsami.7b12095
    [71] Xu X L, Wang H, Liu J B, et al. The applications of zeolitic imidazolate framework-8 in electrical energy storage devices: a review. J Mater Sci Mater Electron, 2017, 28: 7532 doi: 10.1007/s10854-017-6485-6
    [72] Ghimbeu C M, Górka J, Simone V, et al. Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy, 2018, 44: 327 doi: 10.1016/j.nanoen.2017.12.013
    [73] Sathiya M, Rousse G, Ramesha K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater, 2013, 12: 827 doi: 10.1038/nmat3699
    [74] Nayak P K, Erickson E M, Schipper F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn- rich cathode materials for Li-ion batteries. Adv Energy Mater, 2018, 8(8): 1702397 doi: 10.1002/aenm.201702397
    [75] Li W, Liu J, Zhao D Y. Mesoporous materials for energy conversion and storage devices. Nat Rev Mater, 2016, 1: 16023 doi: 10.1038/natrevmats.2016.23
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  3105
  • HTML全文浏览量:  937
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-29
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回