• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯掺杂量与pH值对石墨烯气凝胶储能性能的影响

郭志成 辛青 臧月 林君

郭志成, 辛青, 臧月, 林君. 氧化石墨烯掺杂量与pH值对石墨烯气凝胶储能性能的影响[J]. 工程科学学报, 2021, 43(2): 239-247. doi: 10.13374/j.issn2095-9389.2020.01.07.001
引用本文: 郭志成, 辛青, 臧月, 林君. 氧化石墨烯掺杂量与pH值对石墨烯气凝胶储能性能的影响[J]. 工程科学学报, 2021, 43(2): 239-247. doi: 10.13374/j.issn2095-9389.2020.01.07.001
GUO Zhi-cheng, XIN Qing, ZANG Yue, LIN Jun. Effects of graphene oxide doping content and pH on energy storage performance of graphene aerogel[J]. Chinese Journal of Engineering, 2021, 43(2): 239-247. doi: 10.13374/j.issn2095-9389.2020.01.07.001
Citation: GUO Zhi-cheng, XIN Qing, ZANG Yue, LIN Jun. Effects of graphene oxide doping content and pH on energy storage performance of graphene aerogel[J]. Chinese Journal of Engineering, 2021, 43(2): 239-247. doi: 10.13374/j.issn2095-9389.2020.01.07.001

氧化石墨烯掺杂量与pH值对石墨烯气凝胶储能性能的影响

doi: 10.13374/j.issn2095-9389.2020.01.07.001
基金项目: 浙江省自然科学基金资助项目(LY17B060012,LQ17F050002);浙江省装备电子研究重点实验室资助项目(2019E10009)
详细信息
    通讯作者:

    E-mail: xinqing@hdu.edu.cn

  • 中图分类号: TB34

Effects of graphene oxide doping content and pH on energy storage performance of graphene aerogel

More Information
  • 摘要: 采用溶胶凝胶法制备石墨烯气凝胶(GA),并研究了前驱液中的pH值与氧化石墨烯(GO)的质量分数对GA材料储能性能的影响。使用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、氮气吸脱附分析、扫描电子显微镜(SEM)对样品微观结构与形貌进行表征。用循环伏安(CV)、恒流充放电(CP)、电化学交流阻抗(EIS)测试了样品的电化学性能。结果表明,前驱液中的pH值及GO质量分数的不同会影响GA中团簇颗粒的大小和数量,进一步影响GA三维结构。在pH值为6.3、GO 的质量分数为1%时,制得的GA比表面积最大为530 m2·g−1,在1 A·g−1的电流密度下比电容高达364 F·g−1。此外,将该材料制成对称超级电容器具有高的库伦效率,在1 A·g−1下进行CP测试,得到电容器的比电容为98 F·g−1,循环800次后其循环稳定性能为初始比电容值的95.9%。
  • 图  1  样品的N2吸附–脱附等温线

    Figure  1.  N2 adsorption–desorption isotherms of samples

    图  2  样品的SEM图。(a) GA–1–4;(b) GA–0–6.3;(c) GA–0.4–6.3;(d) GA–1–6.3;(e) GA–1–8

    Figure  2.  SEM images of samples:(a) GA–1–4; (b) GA–0–6.3; (c) GA–0.4–6.3; (d) GA–1–6.3; (e) GA–1–8

    图  3  样品GA–1–6.3的XRD图

    Figure  3.  XRD pattern of GA–1–6.3

    图  4  GA的XPS图。(a)样品GA–1–6.3的XPS图谱;(b)样品GA–1–6.3的高分辨率C 1s XPS图谱

    Figure  4.  XPS spectra of GA:(a) XPS spectra of GA–1–6.3; (b) high-resolution spectra of C 1s of GA–1–6.3

    图  5  GA制备过程图。(a)前驱混合液照片;(b)水凝胶照片;(c)高温炭化后照片

    Figure  5.  Preparation process photos of GA: (a) precursor mixture; (b) hydrogel; (c) hydrogel after carbonization at high temperature

    图  6  GA的CV曲线图。(a),(b) 5 mV·s−1扫描速率下样品的CV曲线图;(c)不同扫描速率下样品GA–1–6.3的CV曲线图

    Figure  6.  CV curves of GA: (a), (b) CV curves of sample at scanning rate of 5 mV·s−1; (c) CV curves of GA–1–6.3 at different scanning rates

    图  7  GA的CP曲线图。(a),(b) 1 A·g−1电流密度下五组样品的CP曲线图;(c)样品GA–1–6.3在1 A·g−1电流密度下的循环寿命曲线图(插图为不同电流密度下样品GA–1–6.3的CP曲线图)

    Figure  7.  CP curves of GA: (a), (b) CP curves of sample at 1 A·g−1 current density; (c) cycle life curve of GA–1–6.3 at a current density of 1 A·g−1 (inset: CP curves of GA–1–6.3 at different current densities)

    图  8  GA的EIS图及其等效电路图。(a)(b)样品的EIS曲线图;(c)电化学阻抗谱的等效电路

    Figure  8.  Nyquist plots and equivalent circuit of GA: (a), (b) Nyquist plots of samples; (c) the equivalent circuit for the electrochemical impedance spectra

    图  9  超级电容器的CP图以及其Ragone图。(a)不同电流密度下超级电容器的CP曲线图;(b)在1 A·g−1电流密度下超级电容器的循环寿命曲线图(插图为超级电容器在1 A·g−1电流密度下第1次、第500次、第800次的CP曲线图);(c)能量密度与功率密度的曲线

    Figure  9.  CP curves and Ragone plot of the supercapacitors: (a) CP curves of the supercapacitors at different current densities; (b) cycle life curves of the supercapacitors at a current density of 1 A·g−1 (inset: CP curves of the first, 500th, and 800th cycles of the super capacitors at 1 A·g−1 current density); (c) curve of energy density vs power density

    表  1  五组样品的比表面积

    Table  1.   Specific surface areas of the samples

    SampleMass fraction of GO/%pHBET/(m2·g−1)
    GA–1–414231
    GA–0–6.306.3115
    GA–0.4–6.30.46.3370
    GA–1–6.316.3530
    GA–1–818203
    下载: 导出CSV
  • [1] Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci, 1989, 24(9): 3221 doi: 10.1007/BF01139044
    [2] Liu N, Zhang S T, Fu R W, et al. Carbon aerogel spheres prepared via alcohol supercritical drying. Carbon, 2006, 44(12): 2430 doi: 10.1016/j.carbon.2006.04.032
    [3] Xie T P, Zhang L, Wang Y, et al. Graphene-based supercapacitors as flexible wearable sensor for monitoring pulse-beat. Ceram Int, 2019, 45(2): 2516 doi: 10.1016/j.ceramint.2018.10.181
    [4] Chandrasekaran S, Campbell P G, Baumann T F, et al. Carbon aerogel evolution: allotrope, graphene-inspired, and 3D-printed aerogels. J Mater Res, 2017, 32(22): 4166 doi: 10.1557/jmr.2017.411
    [5] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
    [6] 刘盼盼, 刘斯奇, 高鸿毅, 等. 羟基磷灰石气凝胶复合相变材料的制备及其性能. 工程科学学报, 2020, 42(1):120

    Liu P P, Liu S Q, Gao H Y, et al. Preparation and properties of hydroxyapatite aerogel composite phase change materials. Chin J Eng, 2020, 42(1): 120
    [7] Wang Y X, Myers M, Staser J A. Electrochemical UV sensor using carbon quantum dot/graphene semiconductor. J Electrochem Soc, 2018, 165(4): H3001 doi: 10.1149/2.0011804jes
    [8] 水丽, 张凯, 于宏. 石墨烯含量对石墨烯/Al–15Si–4Cu–Mg复合材料微观组织和力学性能的影响. 工程科学学报, 2019, 41(9):1162

    Shui L, Zhang K, Yu H. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al–15Si–4Cu–Mg matrix composites. Chin J Eng, 2019, 41(9): 1162
    [9] Méndez-Morales T, Ganfoud N, Li Z J, et al. Performance of microporous carbon electrodes for supercapacitors: comparing graphene with disordered materials. Energy Storage Mater, 2019, 17: 88 doi: 10.1016/j.ensm.2018.11.022
    [10] 付蓉蓉, 罗民, 马永华, 等. Ni3(HCOO)6/还原氧化石墨烯复合电极材料的制备及电容性能. 高等学校化学学报, 2016, 37(8):1485 doi: 10.7503/cjcu20160234

    Fu R R, Luo M, Ma Y H, et al. Preparation and supercapacitance of Ni3(HCOO)6/reduced graphene oxide electrode materials. Chem J Chin Univ, 2016, 37(8): 1485 doi: 10.7503/cjcu20160234
    [11] Zou Z H, Zhou W J, Zhang Y H, et al. High-performance flexible all-solid-state supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film. Chem Eng J, 2019, 357: 45 doi: 10.1016/j.cej.2018.09.143
    [12] Wu X F, Zhang J, Zhuang Y F, et al. Template-free preparation of a few-layer graphene nanomesh via a one-step hydrothermal process. J Mater Sci, 2015, 50(3): 1317 doi: 10.1007/s10853-014-8691-4
    [13] Zhang J J, Zhao X L, Li M X, et al. High-quality and low-cost three-dimensional graphene from graphite flakes via carbocation-induced interlayer oxygen release. Nanoscale, 2018, 10(37): 17638 doi: 10.1039/C8NR04557G
    [14] 高鑫. 石墨烯基超级电容器电极材料的制备及电化学性能[学位论文]. 哈尔滨: 哈尔滨理工大学, 2019

    Gao X. Fabrication and Electrochemical Properties of the Graphene Based Composites as Supercapacitor Electrode Materials [Dissertation]. Harbin: Harbin University of Science and Technology, 2019
    [15] Xu X, Zhang Q Q, Yu Y K, et al. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv Mater, 2016, 28(41): 9223 doi: 10.1002/adma.201603079
    [16] González M, Baselga J, Pozuelo J. Modulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogels. Carbon, 2019, 147: 27 doi: 10.1016/j.carbon.2019.02.068
    [17] Xue Q, Ding Y, Xue Y Y, et al. 3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction. Carbon, 2018, 139: 137 doi: 10.1016/j.carbon.2018.06.052
    [18] Chu H, Zhang F F, Pei L Y, et al. Ni, Co and Mn doped SnS2-graphene aerogels for supercapacitors. J Alloys Compd, 2018, 767: 583 doi: 10.1016/j.jallcom.2018.07.126
    [19] Ates M, Caliskan S, Ozten E. Preparation of rGO/Ag/PEDOT nanocomposites for supercapacitors. Mater Technol, 2018, 33(14): 872 doi: 10.1080/10667857.2018.1521087
    [20] Yang Y, Xi Y L, Li J Z, et al. Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes. Nanoscale Res Lett, 2017, 12: 394 doi: 10.1186/s11671-017-2159-9
    [21] Liu L, Tian G Y, Ma R, et al. Preparation and electrosorption performance of graphene Xerogel. ECS Solid State Lett, 2015, 4(6): M9 doi: 10.1149/2.0011506ssl
    [22] Nagy B, Bakos I, Bertoti I, et al. Synergism of nitrogen and reduced graphene in the electrocatalytic behavior of resorcinol - Formaldehyde based carbon aerogels. Carbon, 2018, 139: 872 doi: 10.1016/j.carbon.2018.07.061
    [23] Rey-Raap N, Arenillas A, Menendez J A. A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels. Microporous Mesoporous Mater, 2016, 223: 89 doi: 10.1016/j.micromeso.2015.10.044
    [24] Garcia-Bordeje E, Victor-Roman S, Sanahuja-Parejo O, et al. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method. Nanoscale, 2018, 10(7): 3526 doi: 10.1039/C7NR08732B
    [25] Horikaw T, Hayashi J, Muroyama K. Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel. Carbon, 2004, 42(8-9): 1625 doi: 10.1016/j.carbon.2004.02.016
    [26] Feng Y N, Wang J, Ge L, et al. Pore size controllable preparation for low density porous nano-carbon. J Nanosci Nanotechnol, 2013, 13(10): 7012 doi: 10.1166/jnn.2013.8063
    [27] Rey-Raap N, Menendez J A, Arenillas A. Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels. Carbon, 2014, 78: 490 doi: 10.1016/j.carbon.2014.07.030
    [28] Elkhatat A M, Al-Muhtaseb S A. Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater, 2011, 23(26): 2887 doi: 10.1002/adma.201100283
    [29] Gallegos-Suarez E, Perez-Cadenas A F, Maldonado-Hodar F J, et al. On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes. Chem Eng J, 2012, 181-182: 851 doi: 10.1016/j.cej.2011.12.002
    [30] Al-Muhtaseb S A, Ritter J A. Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater, 2003, 15(2): 101 doi: 10.1002/adma.200390020
    [31] Matos I, Fernandes S, Guerreiro L, et al. The effect of surfactants on the porosity of carbon xerogels. Microporous Mesoporous Mater, 2006, 92(1-3): 38 doi: 10.1016/j.micromeso.2005.12.011
    [32] Rey-Raap N, Menendez J A, Arenillas A. RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater, 2014, 195: 266 doi: 10.1016/j.micromeso.2014.04.048
    [33] Xia X H, Zhang X F, Yi S Q, et al. Preparation of high specific surface area composite carbon cryogels from self-assembly of graphene oxide and resorcinol monomers for supercapacitors. J Solid State Electrochem, 2016, 20(6): 1793 doi: 10.1007/s10008-016-3196-5
    [34] Wu Z S, Ren W C, Wang D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano, 2010, 4(10): 5835 doi: 10.1021/nn101754k
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1907
  • HTML全文浏览量:  626
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-07
  • 刊出日期:  2021-02-26

目录

    /

    返回文章
    返回