Effects of graphene oxide doping content and pH on energy storage performance of graphene aerogel
-
摘要: 采用溶胶凝胶法制备石墨烯气凝胶(GA),并研究了前驱液中的pH值与氧化石墨烯(GO)的质量分数对GA材料储能性能的影响。使用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、氮气吸脱附分析、扫描电子显微镜(SEM)对样品微观结构与形貌进行表征。用循环伏安(CV)、恒流充放电(CP)、电化学交流阻抗(EIS)测试了样品的电化学性能。结果表明,前驱液中的pH值及GO质量分数的不同会影响GA中团簇颗粒的大小和数量,进一步影响GA三维结构。在pH值为6.3、GO 的质量分数为1%时,制得的GA比表面积最大为530 m2·g−1,在1 A·g−1的电流密度下比电容高达364 F·g−1。此外,将该材料制成对称超级电容器具有高的库伦效率,在1 A·g−1下进行CP测试,得到电容器的比电容为98 F·g−1,循环800次后其循环稳定性能为初始比电容值的95.9%。Abstract: The preparation of graphene aerogel (GA) by the sol-gel method has wide application prospects. In this study, the sol-gel method was used to prepare GA composites using resorcinol (R), formaldehyde (F), and graphene oxide (GO) as precursor materials and sodium carbonate (C) as the catalyst. The effects of the pH value and GO in the precursor solution on the energy storage performance of GA materials were studied. The microstructure and morphology of the samples were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen desorption analysis, and scanning electron microscopy (SEM). Cyclic voltammetry (CV), constant current charge–discharge (CP) and electrochemical impedance spectroscopy (EIS) were used to measure the electrochemical properties of the samples in 1 mol·L−1 Na2SO4 electrolyte. The results show that different pH values and GO affect the size and number of cluster particles in GA and the three-dimensional structure of GA. When the pH value was 6.3 and the mass fraction of GO was 1% in the precursor solution, the obtained GA sample exhibited superior surface properties and electrochemical performance. At a current density of 1 A·g−1, the specific surface area of the GA was 530 m2·g−1, and the specific capacitance was 364 F·g−1. If the current density was increased to 10 A·g−1, the specific capacitance still reached 229 F·g−1, indicating that the GA sample had better multiplier performance. After 800 cycles at a current density of 1 A·g−1, the specific capacitance retention rate was 76%. In addition, the GA sample was utilized as a symmetrical supercapacitor with high coulomb efficiency. The specific capacitance of the capacitor remained at 98 F·g−1 in a constant current charge–discharge test at a current density of 1 A·g−1. After 800 cycles, a specific capacitance retention rate of 95.9% was maintained by the symmetrical supercapacitor. This study provides a method for improving the electrochemical properties of GA to realize supercapacitors with better performance.
-
Key words:
- graphene oxide /
- graphene aerogel /
- pH /
- supercapacitor /
- electrochemical performance
-
图 7 GA的CP曲线图。(a),(b) 1 A·g−1电流密度下五组样品的CP曲线图;(c)样品GA–1–6.3在1 A·g−1电流密度下的循环寿命曲线图(插图为不同电流密度下样品GA–1–6.3的CP曲线图)
Figure 7. CP curves of GA: (a), (b) CP curves of sample at 1 A·g−1 current density; (c) cycle life curve of GA–1–6.3 at a current density of 1 A·g−1 (inset: CP curves of GA–1–6.3 at different current densities)
图 9 超级电容器的CP图以及其Ragone图。(a)不同电流密度下超级电容器的CP曲线图;(b)在1 A·g−1电流密度下超级电容器的循环寿命曲线图(插图为超级电容器在1 A·g−1电流密度下第1次、第500次、第800次的CP曲线图);(c)能量密度与功率密度的曲线
Figure 9. CP curves and Ragone plot of the supercapacitors: (a) CP curves of the supercapacitors at different current densities; (b) cycle life curves of the supercapacitors at a current density of 1 A·g−1 (inset: CP curves of the first, 500th, and 800th cycles of the super capacitors at 1 A·g−1 current density); (c) curve of energy density vs power density
表 1 五组样品的比表面积
Table 1. Specific surface areas of the samples
Sample Mass fraction of GO/% pH BET/(m2·g−1) GA–1–4 1 4 231 GA–0–6.3 0 6.3 115 GA–0.4–6.3 0.4 6.3 370 GA–1–6.3 1 6.3 530 GA–1–8 1 8 203 -
[1] Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci, 1989, 24(9): 3221 doi: 10.1007/BF01139044 [2] Liu N, Zhang S T, Fu R W, et al. Carbon aerogel spheres prepared via alcohol supercritical drying. Carbon, 2006, 44(12): 2430 doi: 10.1016/j.carbon.2006.04.032 [3] Xie T P, Zhang L, Wang Y, et al. Graphene-based supercapacitors as flexible wearable sensor for monitoring pulse-beat. Ceram Int, 2019, 45(2): 2516 doi: 10.1016/j.ceramint.2018.10.181 [4] Chandrasekaran S, Campbell P G, Baumann T F, et al. Carbon aerogel evolution: allotrope, graphene-inspired, and 3D-printed aerogels. J Mater Res, 2017, 32(22): 4166 doi: 10.1557/jmr.2017.411 [5] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896 [6] 刘盼盼, 刘斯奇, 高鸿毅, 等. 羟基磷灰石气凝胶复合相变材料的制备及其性能. 工程科学学报, 2020, 42(1):120Liu P P, Liu S Q, Gao H Y, et al. Preparation and properties of hydroxyapatite aerogel composite phase change materials. Chin J Eng, 2020, 42(1): 120 [7] Wang Y X, Myers M, Staser J A. Electrochemical UV sensor using carbon quantum dot/graphene semiconductor. J Electrochem Soc, 2018, 165(4): H3001 doi: 10.1149/2.0011804jes [8] 水丽, 张凯, 于宏. 石墨烯含量对石墨烯/Al–15Si–4Cu–Mg复合材料微观组织和力学性能的影响. 工程科学学报, 2019, 41(9):1162Shui L, Zhang K, Yu H. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al–15Si–4Cu–Mg matrix composites. Chin J Eng, 2019, 41(9): 1162 [9] Méndez-Morales T, Ganfoud N, Li Z J, et al. Performance of microporous carbon electrodes for supercapacitors: comparing graphene with disordered materials. Energy Storage Mater, 2019, 17: 88 doi: 10.1016/j.ensm.2018.11.022 [10] 付蓉蓉, 罗民, 马永华, 等. Ni3(HCOO)6/还原氧化石墨烯复合电极材料的制备及电容性能. 高等学校化学学报, 2016, 37(8):1485 doi: 10.7503/cjcu20160234Fu R R, Luo M, Ma Y H, et al. Preparation and supercapacitance of Ni3(HCOO)6/reduced graphene oxide electrode materials. Chem J Chin Univ, 2016, 37(8): 1485 doi: 10.7503/cjcu20160234 [11] Zou Z H, Zhou W J, Zhang Y H, et al. High-performance flexible all-solid-state supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film. Chem Eng J, 2019, 357: 45 doi: 10.1016/j.cej.2018.09.143 [12] Wu X F, Zhang J, Zhuang Y F, et al. Template-free preparation of a few-layer graphene nanomesh via a one-step hydrothermal process. J Mater Sci, 2015, 50(3): 1317 doi: 10.1007/s10853-014-8691-4 [13] Zhang J J, Zhao X L, Li M X, et al. High-quality and low-cost three-dimensional graphene from graphite flakes via carbocation-induced interlayer oxygen release. Nanoscale, 2018, 10(37): 17638 doi: 10.1039/C8NR04557G [14] 高鑫. 石墨烯基超级电容器电极材料的制备及电化学性能[学位论文]. 哈尔滨: 哈尔滨理工大学, 2019Gao X. Fabrication and Electrochemical Properties of the Graphene Based Composites as Supercapacitor Electrode Materials [Dissertation]. Harbin: Harbin University of Science and Technology, 2019 [15] Xu X, Zhang Q Q, Yu Y K, et al. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv Mater, 2016, 28(41): 9223 doi: 10.1002/adma.201603079 [16] González M, Baselga J, Pozuelo J. Modulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogels. Carbon, 2019, 147: 27 doi: 10.1016/j.carbon.2019.02.068 [17] Xue Q, Ding Y, Xue Y Y, et al. 3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction. Carbon, 2018, 139: 137 doi: 10.1016/j.carbon.2018.06.052 [18] Chu H, Zhang F F, Pei L Y, et al. Ni, Co and Mn doped SnS2-graphene aerogels for supercapacitors. J Alloys Compd, 2018, 767: 583 doi: 10.1016/j.jallcom.2018.07.126 [19] Ates M, Caliskan S, Ozten E. Preparation of rGO/Ag/PEDOT nanocomposites for supercapacitors. Mater Technol, 2018, 33(14): 872 doi: 10.1080/10667857.2018.1521087 [20] Yang Y, Xi Y L, Li J Z, et al. Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes. Nanoscale Res Lett, 2017, 12: 394 doi: 10.1186/s11671-017-2159-9 [21] Liu L, Tian G Y, Ma R, et al. Preparation and electrosorption performance of graphene Xerogel. ECS Solid State Lett, 2015, 4(6): M9 doi: 10.1149/2.0011506ssl [22] Nagy B, Bakos I, Bertoti I, et al. Synergism of nitrogen and reduced graphene in the electrocatalytic behavior of resorcinol - Formaldehyde based carbon aerogels. Carbon, 2018, 139: 872 doi: 10.1016/j.carbon.2018.07.061 [23] Rey-Raap N, Arenillas A, Menendez J A. A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels. Microporous Mesoporous Mater, 2016, 223: 89 doi: 10.1016/j.micromeso.2015.10.044 [24] Garcia-Bordeje E, Victor-Roman S, Sanahuja-Parejo O, et al. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method. Nanoscale, 2018, 10(7): 3526 doi: 10.1039/C7NR08732B [25] Horikaw T, Hayashi J, Muroyama K. Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel. Carbon, 2004, 42(8-9): 1625 doi: 10.1016/j.carbon.2004.02.016 [26] Feng Y N, Wang J, Ge L, et al. Pore size controllable preparation for low density porous nano-carbon. J Nanosci Nanotechnol, 2013, 13(10): 7012 doi: 10.1166/jnn.2013.8063 [27] Rey-Raap N, Menendez J A, Arenillas A. Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels. Carbon, 2014, 78: 490 doi: 10.1016/j.carbon.2014.07.030 [28] Elkhatat A M, Al-Muhtaseb S A. Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater, 2011, 23(26): 2887 doi: 10.1002/adma.201100283 [29] Gallegos-Suarez E, Perez-Cadenas A F, Maldonado-Hodar F J, et al. On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes. Chem Eng J, 2012, 181-182: 851 doi: 10.1016/j.cej.2011.12.002 [30] Al-Muhtaseb S A, Ritter J A. Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater, 2003, 15(2): 101 doi: 10.1002/adma.200390020 [31] Matos I, Fernandes S, Guerreiro L, et al. The effect of surfactants on the porosity of carbon xerogels. Microporous Mesoporous Mater, 2006, 92(1-3): 38 doi: 10.1016/j.micromeso.2005.12.011 [32] Rey-Raap N, Menendez J A, Arenillas A. RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater, 2014, 195: 266 doi: 10.1016/j.micromeso.2014.04.048 [33] Xia X H, Zhang X F, Yi S Q, et al. Preparation of high specific surface area composite carbon cryogels from self-assembly of graphene oxide and resorcinol monomers for supercapacitors. J Solid State Electrochem, 2016, 20(6): 1793 doi: 10.1007/s10008-016-3196-5 [34] Wu Z S, Ren W C, Wang D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano, 2010, 4(10): 5835 doi: 10.1021/nn101754k -