• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿石颗粒级配对堆浸体系三维孔隙结构的影响

尹升华 陈勋 刘超 王雷鸣 严荣富

尹升华, 陈勋, 刘超, 王雷鸣, 严荣富. 矿石颗粒级配对堆浸体系三维孔隙结构的影响[J]. 工程科学学报, 2020, 42(8): 972-979. doi: 10.13374/j.issn2095-9389.2020.01.17.002
引用本文: 尹升华, 陈勋, 刘超, 王雷鸣, 严荣富. 矿石颗粒级配对堆浸体系三维孔隙结构的影响[J]. 工程科学学报, 2020, 42(8): 972-979. doi: 10.13374/j.issn2095-9389.2020.01.17.002
YIN Sheng-hua, CHEN Xun, LIU Chao, WANG Lei-ming, YAN Rong-fu. Effects of ore size distribution on the pore structure characteristics of packed ore beds[J]. Chinese Journal of Engineering, 2020, 42(8): 972-979. doi: 10.13374/j.issn2095-9389.2020.01.17.002
Citation: YIN Sheng-hua, CHEN Xun, LIU Chao, WANG Lei-ming, YAN Rong-fu. Effects of ore size distribution on the pore structure characteristics of packed ore beds[J]. Chinese Journal of Engineering, 2020, 42(8): 972-979. doi: 10.13374/j.issn2095-9389.2020.01.17.002

矿石颗粒级配对堆浸体系三维孔隙结构的影响

doi: 10.13374/j.issn2095-9389.2020.01.17.002
基金项目: 国家优秀青年科学基金资助项目(51722401);中央高校基本科研业务费专项资金资助项目(FRF-TP-18-003C1);国家自然科学基金重点资助项目(51734001)
详细信息
    通讯作者:

    E-mail:ckchenxun@163.com

  • 中图分类号: TD853

Effects of ore size distribution on the pore structure characteristics of packed ore beds

More Information
  • 摘要: 为研究堆浸体系矿石粒径分布对孔隙结构的影响,对不同级配矿岩散体构成的浸柱开展显微CT扫描测试,得到浸柱内部结构图像。通过阈值分割算法对孔隙结构进行提取,建立浸柱三维孔隙模型,对浸柱体孔隙率和面孔隙率的空间分布特征进行研究。利用最大球算法构建浸柱孔隙网络模型,进而分析矿石粒径分布对孔喉半径、喉道长度、孔喉体积、形状因子和配位数等参数的影响规律。结果表明:矿石颗粒级配性越好,矿堆孔隙率越低;矿石粒径越均匀,矿堆不同区域孔隙率差异越小;矿石粒径分布对孔隙尺寸和连通性影响较为显著,对孔喉形状因子影响较小。随着细颗粒矿石的减少,大孔隙增多,孔喉半径、喉道长度和孔喉体积相应增大;随着矿石粒径均匀性的增加,堆浸体系中孤立孔隙所占比例减少,高配位数孔隙所占比例增大,即矿堆内的孔隙空间具有更好的连通性。
  • 图  1  矿石粒径分布曲线

    Figure  1.  Particle size distribution in ore columns

    图  2  浸柱CT扫描图像

    Figure  2.  CT scanning images of ore columns

    图  3  浸柱三维图像。(a)浸柱A;(b)浸柱B

    Figure  3.  3D reconstructed ore columns: (a) column A; (b) column B

    图  4  浸柱三维孔隙结构图像。(a)浸柱A;(b)浸柱B

    Figure  4.  3D pore image of ore columns: (a) column A; (b) column B

    图  5  浸柱分区示意图

    Figure  5.  Schematic showing volume division of samples

    图  6  浸柱不同区域相对孔隙率变化

    Figure  6.  Relative porosity of different regions within ore columns

    图  7  面孔隙率随浸柱高度变化曲线

    Figure  7.  Distribution of 2D porosity along ore column height direction

    图  8  相对面孔隙率随浸柱高度变化曲线

    Figure  8.  Distribution of relative 2D porosity along ore column height direction

    图  9  浸柱孔隙网络模型。(a)浸柱A;(b)浸柱B

    Figure  9.  Pore network model of ore columns: (a) column A; (b) column B

    图  10  孔喉半径分布曲线。(a)孔隙;(b)喉道

    Figure  10.  Frequency distribution of radius: (a) pore; (b) throat

    图  11  喉道长度分布曲线

    Figure  11.  Frequency distribution of throat length

    图  12  孔喉体积分布曲线。(a)孔隙;(b)喉道

    Figure  12.  Frequency distribution of pore volume: (a) pore; (b) throat

    图  13  孔喉形状因子分布曲线。(a)孔隙;(b)喉道

    Figure  13.  Frequency distribution of shape factor: (a) pore; (b) throat

    图  14  孔隙配位数分布曲线

    Figure  14.  Frequency distribution of coordination number

  • [1] Ilankoon I M S K, Tang Y, Ghorbani Y, et al. The current state and future directions of percolation leaching in the Chinese mining industry: Challenges and opportunities. <italic>Miner Eng</italic>, 2018, 125: 206 doi: 10.1016/j.mineng.2018.06.006
    [2] Yin S H, Wang L M, Kabwe E, et al. Copper bioleaching in China: review and prospect. <italic>Minerals</italic>, 2018, 8(2): 32 doi: 10.3390/min8020032
    [3] Petersen J. Heap leaching as a key technology for recovery of values from low-grade ores–a brief overview. <italic>Hydrometallurgy</italic>, 2016, 165: 206 doi: 10.1016/j.hydromet.2015.09.001
    [4] 尹升华;王雷鸣;吴爱祥, 等. 我国铜矿微生物浸出技术的研究进展. 工程科学学报, 2019, 41(2):143

    Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. <italic>Chin J Eng</italic>, 2019, 41(2): 143
    [5] Ghorbani Y, Franzidis J P, Petersen J. Heap leaching technology—current state, innovations, and future directions: a review. <italic>Miner Process Extract Metall Rev</italic>, 2016, 37(2): 73
    [6] 缪秀秀, 吴爱祥, 杨保华. 堆浸水力学研究前沿: 结构表征与模型仿真. 中国有色金属学报, 2018, 28(11):2327

    Miao X X, Wu A X, Yang B H. Recent advances in heap leaching research: Characterisation and modelling. <italic>Chin J Nonferrous Met</italic>, 2018, 28(11): 2327
    [7] Bouffard S C, West-Sells P G. Hydrodynamic behavior of heap leach piles: Influence of testing scale and material properties. <italic>Hydrometallurgy</italic>, 2009, 98(1-2): 136 doi: 10.1016/j.hydromet.2009.04.012
    [8] 吴爱祥, 王少勇, 杨保华. 堆浸散体颗粒结构对溶浸液渗流规律的影响. 矿业研究与开发, 2011(5):22

    Wu A X, Wang S Y, Yang B H. Effect of particle structure on permeability of leaching dump. <italic>Min Res Dev</italic>, 2011(5): 22
    [9] Rong L W, Dong K J, Yu A B. Lattice-Boltzmann simulation of fluid flow through packed beds of spheres: effect of particle size distribution. <italic>Chem Eng Sci</italic>, 2014, 116: 508 doi: 10.1016/j.ces.2014.05.025
    [10] Ilankoon I M S K, Neethling S J. Hysteresis in unsaturated flow in packed beds and heaps. <italic>Miner Eng</italic>, 2012, 35: 1 doi: 10.1016/j.mineng.2012.05.007
    [11] 丁德馨, 李广悦, 徐文平, 等. 松散破碎介质中液体饱和渗流规律研究. 岩土工程学报, 2010, 32(2):180

    Ding D X, Li G Y, Xu W P, et al. Regularities for saturated water seepage in loose fragmented medium. <italic>Chin J Geotech Eng</italic>, 2010, 32(2): 180
    [12] Ilankoon I M S K, Neethling S J. Liquid spread mechanisms in packed beds and heaps. The separation of length and time scales due to particle porosity. <italic>Miner Eng</italic>, 2016, 86: 130 doi: 10.1016/j.mineng.2015.12.010
    [13] Poisson J, Chouteau M, Aubertin M, et al. Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile. <italic>J Appl Geophys</italic>, 2009, 67(2): 179 doi: 10.1016/j.jappgeo.2008.10.011
    [14] Yin S H, Wang L M, Chen X, et al. Effect of ore size and heap porosity on capillary process inside leaching heap. <italic>Trans Nonferrous Met Soc China</italic>, 2016, 26(3): 835 doi: 10.1016/S1003-6326(16)64174-2
    [15] 叶勇军, 丁德馨, 李广悦, 等. 堆浸铀矿堆液体饱和渗流规律的研究. 岩土力学, 2013, 34(8):2243

    Ye Y J, Ding D X, Li G Y, et al. Regularities for liquid saturated seepage in uranium ore heap for heap leaching. <italic>Rock Soil Mech</italic>, 2013, 34(8): 2243
    [16] Dhawan N, Safarzadeh M S, Miller J D, et al. Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems. <italic>Miner Eng</italic>, 2012, 35: 75 doi: 10.1016/j.mineng.2012.03.033
    [17] 叶加兵, 张家发, 邹维列. 颗粒形状对碎石料孔隙特性影响研究. 岩土力学, 2018, 39(12):4457

    Ye J B, Zhang J F, Zou W L. Influences of grain shape on pore characteristics of filled breakstone aggregate. <italic>Rock Soil Mech</italic>, 2018, 39(12): 4457
    [18] Nosrati A, Skinner W, Robinson D J, et al. Microstructure analysis of Ni laterite agglomerates for enhanced heap leaching. <italic>Powder Technol</italic>, 2012, 232: 106 doi: 10.1016/j.powtec.2012.08.016
    [19] Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. <italic>Earth-Sci Rev</italic>, 2013, 123: 1 doi: 10.1016/j.earscirev.2013.04.003
    [20] Hoummady E, Golfier F, Cathelineau M, et al. A multi-analytical approach to the study of uranium-ore agglomerate structure and porosity during heap leaching. <italic>Hydrometallurgy</italic>, 2017, 171: 33 doi: 10.1016/j.hydromet.2017.04.011
    [21] Lin Q, Neethling S J, Courtois L, et al. Multi-scale quantification of leaching performance using X-ray tomography. <italic>Hydrometallurgy</italic>, 2016, 164: 265 doi: 10.1016/j.hydromet.2016.06.020
    [22] 吴爱祥, 尹升华, 李建锋. 离子型稀土矿原地溶浸溶浸液渗流规律的影响因素. 中南大学学报: 自然科学版, 2005, 36(3):506

    Wu A X, Yin S H, Li J F. Influential factors of permeability rule of leaching solution in ion-absorbed rare earth deposits with in situ leaching. <italic>J Cent South Univ Sci Technol</italic>, 2005, 36(3): 506
    [23] 刘一飞, 郑东生, 杨兵, 等. 粒径及级配特性对土体渗透系数影响的细观模拟. 岩土力学, 2019, 40(1):403

    Liu Y F, Zheng D S, Yang B, et al. Microscopic simulation of influence of particle size and gradation on permeability coefficient of soil. <italic>Rock Soil Mech</italic>, 2019, 40(1): 403
    [24] 杨保华, 吴爱祥, 缪秀秀. 基于图像处理的矿石颗粒三维微观孔隙结构演化. 工程科学学报, 2016, 38(3):328

    Yang B H, Wu A X, Miao X X. 3D micropore structure evolution of ore particles based on image processing. <italic>Chin J Eng</italic>, 2016, 38(3): 328
    [25] Zhang S, Liu W Y, Granata G. Effects of grain size gradation on the porosity of packed heap leach beds. <italic>Hydrometallurgy</italic>, 2018, 179: 238 doi: 10.1016/j.hydromet.2018.06.014
    [26] Raeini A Q, Bijeljic B, Blunt M J. Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media. <italic>Phys Rev E</italic>, 2017, 96(1): 013312 doi: 10.1103/PhysRevE.96.013312
    [27] 焦华喆, 王树飞, 吴爱祥, 等. 剪切浓密床层孔隙网络模型与导水通道演化. 工程科学学报, 2019, 41(8):987

    Jiao H Z, Wang S F, Wu A X, et al. Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect. <italic>Chin J Eng</italic>, 2019, 41(8): 987
    [28] Bultreys T, Lin Q Y, Gao Y, et al. Validation of model predictions of pore-scale fluid distributions during two-phase flow. <italic>Phys Rev E</italic>, 2018, 97(5): 053104 doi: 10.1103/PhysRevE.97.053104
  • 加载中
图(14)
计量
  • 文章访问数:  782
  • HTML全文浏览量:  661
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-17
  • 刊出日期:  2020-09-11

目录

    /

    返回文章
    返回