• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云南某胶磷矿AMICS工艺矿物学研究及其难选机理探讨

吴中贤 陶东平

吴中贤, 陶东平. 云南某胶磷矿AMICS工艺矿物学研究及其难选机理探讨[J]. 工程科学学报, 2021, 43(4): 503-511. doi: 10.13374/j.issn2095-9389.2020.02.24.001
引用本文: 吴中贤, 陶东平. 云南某胶磷矿AMICS工艺矿物学研究及其难选机理探讨[J]. 工程科学学报, 2021, 43(4): 503-511. doi: 10.13374/j.issn2095-9389.2020.02.24.001
WU Zhong-xian, TAO Dong-ping. Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms[J]. Chinese Journal of Engineering, 2021, 43(4): 503-511. doi: 10.13374/j.issn2095-9389.2020.02.24.001
Citation: WU Zhong-xian, TAO Dong-ping. Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms[J]. Chinese Journal of Engineering, 2021, 43(4): 503-511. doi: 10.13374/j.issn2095-9389.2020.02.24.001

云南某胶磷矿AMICS工艺矿物学研究及其难选机理探讨

doi: 10.13374/j.issn2095-9389.2020.02.24.001
基金项目: 辽宁省攀登学者人才资助项目;辽宁省重点资助项目(2017230002)
详细信息
    通讯作者:

    E-mail:dptao@qq.com

  • 中图分类号: TD912

Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms

More Information
  • 摘要: 为了深入探讨胶磷矿难选的具体原因,采用化学分析、X射线衍射以及矿物自动分析系统(AMICS)测试手段对云南某胶磷矿浮选给料进行了系统深入的工艺矿物学研究,探索了该矿样难浮选分离的内在机理。结果表明:该样品中磷主要以氟磷灰石形式存在,其脉石矿物以白云石和石英为主。氟磷灰石的嵌布粒度较细,主要分布于10~75 μm的粒度范围,其单体解离度为59.17%。除了以单体的形式存在以外,氟磷灰石主要与白云石、石英连生,连生体的质量分数分别为26.23%和9.92%。而白云石和石英的单体解离度相对较低,分别为46.82%和39.10%。进行了粗选脱镁、一粗两扫脱硅的闭路流程浮选试验,获得了精矿P2O5品位为29.75%、P2O5回收率为81.95%,SiO2品位为12.63%的浮选指标。结合工艺矿物学分析结果,指出该浮选样品中胶磷矿嵌布粒度细、难以获得较好的解离度、泥化严重是浮选难于获得更好指标的主要原因。
  • 图  1  主要矿物粒度分布

    Figure  1.  Particle size distribution of main minerals

    图  2  各粒级下氟磷灰石与其他矿物的连生情况

    Figure  2.  Association of fluorapatite with other minerals under different grain sizes

    图  3  各粒级下白云石与其他矿物的连生情况

    Figure  3.  Association of dolomite with other minerals under different grain sizes

    图  4  白云石与氟磷灰石连生情况

    Figure  4.  Association of dolomite and fluorapatite

    图  5  各粒级下石英与其他矿物的连生情况

    Figure  5.  Association of quartz with other minerals under different grain sizes

    图  6  石英与氟磷灰石连生情况

    Figure  6.  Association of quartz and fluorapatite

    图  7  不同粒级产品的单体含量

    Figure  7.  Liberated particle content of products with different particle sizes

    图  8  开路流程试验

    Figure  8.  Open circuit flotation flowsheet test

    图  9  开路流程各产品粒度分析

    Figure  9.  Particle size analysis of each product in the open circuit process

    图  10  闭路浮选流程试验

    Figure  10.  Closed-circuit flotation flowsheet

    图  11  各产品中P2O5分布率与颗粒粒度的关系

    Figure  11.  Relationship between P2O5 distribution rate and particle size in various products

    表  1  浮选药剂

    Table  1.   Flotation reagents

    NameApplicationSpecificationsManufacturer
    Hydrochloric acidpH RegulatorARAladdin
    Sodium hexametaphosphateDepressantARAladdin
    Sodium oleateDolomite collectorARAladdin
    KDJQuartz collectorARMade in laboratory
    Notice:AR means analytical reagent.
    下载: 导出CSV

    表  2  原矿化学多元素分析结果

    Table  2.   Results of chemical multi-element analysis of raw ore %

    P2O5MgOSiO2Al2O3FCaOFe2O3
    21.236.4114.081.583.0051.011.747
    K2OTiO2MnOZnOSrOZrO2Na2O
    0.4480.0960.06910.02150.07530.00310.23
    下载: 导出CSV

    表  3  原矿样品主要矿物的质量分数

    Table  3.   Mass fraction of main minerals in raw ore samples %

    FluorapatiteDolomiteQuartzAugiteOrthoclaseKimzeyite
    60.9623.7310.950.10.30.96
    ArmstrongiteIsokiteCalciteIlliteOthers
    0.890.120.370.511.11
    下载: 导出CSV

    表  4  氟磷灰石的连体情况统计

    Table  4.   Statistics on composite particles of fluorapatite %

    The mosaic
    type
    FluorapatiteFluorapatite–
    dolomite
    Fluorapatite–
    quartz
    Fluorapatite–
    other
    Mass fraction59.5726.239.924.27
    下载: 导出CSV

    表  5  白云石连体情况

    Table  5.   Statistics of composite particles of dolomite %

    The mosaic
    type
    DolomiteDolomite–
    fluorapatite
    Dolomite–
    quartz
    Dolomite–
    other
    Mass fraction46.2043.676.094.04
    下载: 导出CSV

    表  6  石英连体情况

    Table  6.   Statistics of composite particles of quartz %

    The mosaic
    type
    QuartzQuartz–
    fluorapatite
    Quartz–
    dolomite
    Quartz–
    other
    Mass fraction41.7339.0411.188.05
    下载: 导出CSV
  • [1] 崔荣国, 张艳飞, 郭娟, 等. 资源全球配置下的中国磷矿发展策略. 中国工程科学, 2019, 21(1):128

    Cui R G, Zhang Y F, Guo J, et al. Development strategy of phosphate rock in China under global allocation of resources. Eng Sci, 2019, 21(1): 128
    [2] 张亮, 杨卉芃, 冯安生, 等. 全球磷矿资源开发利用现状及市场分析. 矿产保护与利用, 2017(5):105

    Zhang L, Yang H F, Feng A S, et al. Study on general situation and analysis of supply and demand of global phosphate resources. Conserv Utilization Miner Resour, 2017(5): 105
    [3] Liu X, Li C X, Luo H H, et al. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. Int J Miner Process, 2017, 165: 20 doi: 10.1016/j.minpro.2017.06.004
    [4] Yang H Y, Xiao J F, Xia Y, et al. Origin of the Ediacaran Weng’an and Kaiyang phosphorite deposits in the Nanhua basin, SW China. J Asian Earth Sci, 2019, 182: 103931 doi: 10.1016/j.jseaes.2019.103931
    [5] 李维, 高辉, 罗英杰, 等. 国内外磷矿资源利用现状、趋势分析及对策建议. 中国矿业, 2015, 24(6):6 doi: 10.3969/j.issn.1004-4051.2015.06.003

    Li W, Gao H, Luo Y J, et al. Status, trends and suggestions of phosphorus ore resources at home and abroad. China Min Mag, 2015, 24(6): 6 doi: 10.3969/j.issn.1004-4051.2015.06.003
    [6] Abouzeid A Z M. Physical and thermal treatment of phosphate ores——an overview. Int J Miner Process, 2008, 85(4): 59 doi: 10.1016/j.minpro.2007.09.001
    [7] 赵凤婷, 李若兰, 刘丽芬, 等. 云南某碳酸盐型胶磷矿双反浮选脱硅工艺流程探讨. 化工矿物与加工, 2019, 48(8):48

    Zhao F T, Li R L, Liu L F, et al. Discussion on double-reverse flotation desilication process of carbonate collophanite in Yunnan. Ind Miner Process, 2019, 48(8): 48
    [8] 周泽富, 陈明祥, 盛先芳, 等. 放马山中低品位胶磷矿双反浮选试验研究. 化工矿物与加工, 2016, 45(5):5

    Zhou Z F, Chen M X, Sheng X F, et al. Double-reverse flotation test on medium and low grade collophanite from Fangmashan. Ind Miner Process, 2016, 45(5): 5
    [9] 周明安, 戴川, 刘丽芬, 等. 昆阳磷矿浮选厂浮选柱的改造. 现代矿业, 2016, 32(6):75 doi: 10.3969/j.issn.1674-6082.2016.06.028

    Zhou M A, Dai C, Liu L F, et al. Transformation of flotation column in Kunyang phosphate flotation plant. Mod Min, 2016, 32(6): 75 doi: 10.3969/j.issn.1674-6082.2016.06.028
    [10] 刘安, 韩峰, 李志红, 等. 纳米气泡在微细粒矿物浮选中的应用研究进展. 矿产保护与利用, 2018(3):81

    Liu A, Han F, Li Z H, et al. Research progress of nano-bubble in micro-fine mineral flotation. Conserv Utilization Miner Resour, 2018(3): 81
    [11] Hoang D H, Kupka N, Peuker U A, et al. Flotation study of fine grained carbonaceous sedimentary apatite ore-Challenges in process mineralogy and impact of hydrodynamics. Miner Eng, 2018, 121: 196 doi: 10.1016/j.mineng.2018.03.021
    [12] 桂夏辉, 邢耀文, 王波, 等. 煤泥浮选过程强化之一——国内外研究现状篇. 选煤技术, 2017(1):93

    Gui X H, Xing Y W, Wang B, et al. Fine coal flotation process intensification: part 1-a general overview of the state-of-the-art of the related research work conducted both within and abroad. Coal Prepar Technol, 2017(1): 93
    [13] Hoang D H, Hassanzadeh A, Peuker U A, et al. Impact of flotation hydrodynamics on the optimization of fine-grained carbonaceous sedimentary apatite ore beneficiation. Powder Technol, 2019, 345: 223 doi: 10.1016/j.powtec.2019.01.014
    [14] 杨稳权, 方世祥, 庞建涛, 等. 胶磷矿不同磨矿细度单体解离度测定及其浮选应用. 武汉工程大学学报, 2014, 36(4):31 doi: 10.3969/j.issn.1674-2869.2014.04.007

    Yang W Q, Fang S X, Pang J T, et al. Determination of collophane monomer dissociation degree under different grinding fineness and its use in flotation. J Wuhan Inst Technol, 2014, 36(4): 31 doi: 10.3969/j.issn.1674-2869.2014.04.007
    [15] Leistner T, Embrechts M, Leißner T, et al. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Miner Eng, 2016, 96-97: 94 doi: 10.1016/j.mineng.2016.06.020
    [16] Leistner T, Peuker U A, Rudolph M. How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation. Miner Eng, 2017, 109: 1 doi: 10.1016/j.mineng.2017.02.005
    [17] Luttrell G H, Yoon R H. A hydrodynamic model for bubble-particle attachment. J Colloid Interface Sci, 1992, 154(1): 129 doi: 10.1016/0021-9797(92)90085-Z
    [18] Gu Y. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser. J Miner Mater Charact Eng, 2003, 2(1): 33
    [19] 方福跃, 王静明. 云南某磷矿选矿厂旋流器溢流产品工艺矿物学研究. 价值工程, 2019, 38(8):162

    Fang F Y, Wang J M. The mineralogy characteristics of overflow product from hydrocyclone in the Yunnan Phosphorite Mine. Value Eng, 2019, 38(8): 162
    [20] 李洪强, 张文, 郑惠方, 等. 大峪口胶磷矿工艺矿物学研究. 化工矿物与加工, 2019, 48(12):43

    Li H Q, Zhang W, Zheng H F, et al. Process mineralogy study of phosphate ore in Dayukou area. Ind Miner Process, 2019, 48(12): 43
    [21] 韩明. 工艺矿物学在矿物加工中的应用分析. 世界有色金属, 2018(13):242 doi: 10.3969/j.issn.1002-5065.2018.13.134

    Han M. Analysis of application of technological mineralogy in mineral processing. World Nonferrous Met, 2018(13): 242 doi: 10.3969/j.issn.1002-5065.2018.13.134
    [22] 张覃, 何发钰, 卯松, 等. 胶磷矿和白云石的嵌布特征及磨矿细度试验. 化工矿物与加工, 2010, 39(12):8 doi: 10.3969/j.issn.1008-7524.2010.12.003

    Zhang Q, He F Y, Mao S, et al. Dissemination characteristics and grinding fineness of collophanite and dolomite. Ind Miner Process, 2010, 39(12): 8 doi: 10.3969/j.issn.1008-7524.2010.12.003
    [23] Leißner T, Hoang D H, Rudolph M, et al. A mineral liberation study of grain boundary fracture based on measurements of the surface exposure after milling. Int J Miner Process, 2016, 156: 3 doi: 10.1016/j.minpro.2016.08.014
    [24] de Medeiros A R S, Baltar C A M. Importance of collector chain length in flotation of fine particles. Miner Eng, 2018, 122: 179 doi: 10.1016/j.mineng.2018.03.008
    [25] 张琦, 唐学飞, 刘杰, 等. 鞍山式铁矿重选精矿工艺矿物学研究. 金属矿山, 2019(2):183

    Zhang Q, Tang X F, Liu J, et al. Process mineralogy of gravity concentrate of Anshan iron mine. Met Mine, 2019(2): 183
    [26] 赵凤婷, 周琼波, 庞建涛, 等. 磷矿脱硅研究现状概述. 磷肥与复肥, 2019, 34(6):33 doi: 10.3969/j.issn.1007-6220.2019.06.011

    Zhao F T, Zhou Q B, Pang J T, et al. Summary of research status of desilication of collophane. Phosphate Compd Fertilizer, 2019, 34(6): 33 doi: 10.3969/j.issn.1007-6220.2019.06.011
    [27] Vieira A M, Peres A E C. The effect of amine type, pH, and size range in the flotation of quartz. Miner Eng, 2007, 20(10): 1008 doi: 10.1016/j.mineng.2007.03.013
    [28] 于跃先, 马力强, 张仲玲, 等. 煤泥浮选过程中的细泥夹带与罩盖机理. 煤炭学报, 2015, 40(3):652

    Yu Y X, Ma L Q, Zhang Z L, et al. Mechanism of entrainment and slime coating on coal flotation. J China Coal Soc, 2015, 40(3): 652
    [29] Yao J, Xue J W, Li D, et al. Effects of fine-coarse particles interaction on flotation separation and interaction energy calculation. Part Sci Technol, 2018, 36(1): 11 doi: 10.1080/02726351.2016.1205687
    [30] Yin W Z, Li D, Luo X M, et al. Effect and mechanism of siderite on reverse flotation of hematite. Int J Miner Metall Mater, 2016, 23(4): 373 doi: 10.1007/s12613-016-1246-8
    [31] 宋子翔, 韩继康, 王伟之, 等. 浮选柱技术发展与应用现状. 金属矿山, 2019(6):20

    Song Z X, Han J K, Wang W Z, et al. Development and application status of flotation column technology. Met Mine, 2019(6): 20
    [32] Fan M M, Tao D, Honaker R, et al. Nanobubble generation and its application in froth flotation (part II): fundamental study and theoretical analysis. Min Sci Technol (China), 2010, 20(2): 159 doi: 10.1016/S1674-5264(09)60179-4
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  1045
  • HTML全文浏览量:  487
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-24
  • 网络出版日期:  2020-12-09
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回