• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

总氧含量对齿轮钢中非金属夹杂物的影响

何肖飞 胡成飞 徐乐 王毛球

何肖飞, 胡成飞, 徐乐, 王毛球. 总氧含量对齿轮钢中非金属夹杂物的影响[J]. 工程科学学报, 2021, 43(4): 537-544. doi: 10.13374/j.issn2095-9389.2020.03.05.001
引用本文: 何肖飞, 胡成飞, 徐乐, 王毛球. 总氧含量对齿轮钢中非金属夹杂物的影响[J]. 工程科学学报, 2021, 43(4): 537-544. doi: 10.13374/j.issn2095-9389.2020.03.05.001
HE Xiao-fei, HU Cheng-fei, XU Le, WANG Mao-qiu. Effect of total oxygen on the nonmetallic inclusion of gear steel[J]. Chinese Journal of Engineering, 2021, 43(4): 537-544. doi: 10.13374/j.issn2095-9389.2020.03.05.001
Citation: HE Xiao-fei, HU Cheng-fei, XU Le, WANG Mao-qiu. Effect of total oxygen on the nonmetallic inclusion of gear steel[J]. Chinese Journal of Engineering, 2021, 43(4): 537-544. doi: 10.13374/j.issn2095-9389.2020.03.05.001

总氧含量对齿轮钢中非金属夹杂物的影响

doi: 10.13374/j.issn2095-9389.2020.03.05.001
基金项目: 国家重点研发计划资助项目(2016YFB0300102)
详细信息
    通讯作者:

    E-mail:xiaofei6423@126.com

  • 中图分类号: TF4

Effect of total oxygen on the nonmetallic inclusion of gear steel

More Information
  • 摘要: 为了保证齿轮钢中非金属夹杂物的控制,并确定齿轮钢经济合理的总氧含量控制目标,开展了总氧含量对齿轮钢中非金属夹杂物的影响研究。以三种不同总氧含量的Mn–Cr系齿轮钢为研究对象,利用Aspex扫描电镜、极值法、疲劳测试等不同方法研究了齿轮钢中非金属夹杂物数量、分布、尺寸等,获得了夹杂物与齿轮钢总氧含量的对应关系。在本文实验条件下,随着总氧含量的降低,钢中氧化物夹杂数量不断减小,其中5~10 μm的小尺寸夹杂物减小最明显,而10 μm以上的大尺寸夹杂物数量变化规律不明显。另外,极值法和疲劳试验结果表明,总氧含量高时(质量分数为0.0013%),钢中最大氧化物夹杂尺寸也较大,比总氧质量分数为0.0010%和0.0005%的实验钢的最大夹杂物尺寸高10 μm以上,且当总氧含量比较低时(质量分数≤0.0010%),实验钢总氧质量分数变化(0.0010%、0.0005%)对钢中最大夹杂物尺寸影响不大。
  • 图  1  非金属夹杂物试样取样及检测方案

    Figure  1.  Sampling and detection scheme of nonmetallic inclusions

    图  2  实验钢中非金属夹杂物类型及典型形貌。(a),(b),(c)氧化物夹杂;(d)硫化物夹杂;(e)复合型夹杂物

    Figure  2.  Types and typical morphology of nonmetallic inclusions in test steels: (a), (b), (c) oxide inclusion; (d) sulfide inclusion; (e) oxide–sulfide complex inclusion

    图  3  三类非金属氧化物夹杂典型能谱。(a)Al2O3;(b)MgO–Al2O3:(c)CaO–Al2O3

    Figure  3.  Typical EDS of three kinds of nonmetallic oxide inclusions: (a) Al2O3; (b) MgO–Al2O3: (c) CaO–Al2O3

    图  4  不同总氧含量实验钢中氧化物夹杂物成分分布。(a)1号钢;(b)2号钢;(c)3号钢

    Figure  4.  Composition distribution of oxide inclusions in different total oxygen content steels: (a) Steel No.1; (b) Steel No.2; (c) Steel No.3

    图  5  总氧含量对实验钢中氧化物夹杂数量密度的影响

    Figure  5.  Effect of total oxygen content on the density of oxide inclusions in test steels

    图  6  总氧含量对实验钢中氧化物夹杂分布的影响。(a)1号钢;(b)2号钢;(c)3号钢

    Figure  6.  Effect of total oxygen content on the distribution of oxide inclusions in test steels: (a) Steel No.1; (b) Steel No.2; (c) Steel No.3

    图  7  极值法预测不同总氧含量实验钢中最大夹杂物尺寸

    Figure  7.  Prediction of the maximum inclusion size in steels with different total oxygen content by the extreme value method

    图  8  疲劳断口上典型夹杂物及其能谱。(a)CaO–Al2O3;(b)MgO–Al2O3

    Figure  8.  Typical inclusions of fatigue fracture and their EDS: (a) CaO–Al2O3;(b) MgO–Al2O3

    图  9  总氧含量对钢中最大夹杂物尺寸的影响

    Figure  9.  Effect of total oxygen content on the size of the largest inclusions in steels

    表  1  实验钢的化学成分(质量分数)

    Table  1.   Chemical composition of experimental steel %

    Steel No.CSiMnCrAlTiPSO
    10.180.071.231.210.02<0.001<0.015<0.0350.0013
    20.170.071.221.220.03<0.001<0.015<0.0350.0010
    30.170.071.241.240.03<0.001<0.015<0.0350.0005
    下载: 导出CSV

    表  2  实验钢中氧化物夹杂数量密度

    Table  2.   Number density of oxide inclusions in test steels mm–2

    Steel No.5–10 μm10–15 μm15–20 μm≥20 μmTotal
    11.470.120.030.071.69
    20.540.130.120.040.83
    30.060.01000.07
    下载: 导出CSV
  • [1] Dengo C, Meneghetti G, Dabalà M. Experimental analysis of bending fatigue strength of plain and notched case-hardened gear steels. Int J Fatigue, 2015, 80: 145 doi: 10.1016/j.ijfatigue.2015.04.015
    [2] 陈晖, 周细应. 汽车齿轮钢的研究进展. 材料科学与工程学报, 2011, 29(3):478

    Chen H, Zhou X Y. Research progress of gear steel for automobiles. J Mater Sci Eng, 2011, 29(3): 478
    [3] 王新华, 姜敏, 于会香, 等. 超低氧特殊钢中非金属夹杂物研究. 炼钢, 2015, 31(6):1

    Wang X H, Jiang M, Yu H X, et al. Investigation on non-metallic inclusions in ultra-low oxygen special steels. Steelmaking, 2015, 31(6): 1
    [4] Murakami Y, Yamashita Y. Prediction of life and scatter of fatigue failure originated at nonmetallic inclusions. Procedia Eng, 2014, 74: 6 doi: 10.1016/j.proeng.2014.06.214
    [5] Murakami Y, Beretta S. Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications. Extremes, 1999, 2(2): 123 doi: 10.1023/A:1009976418553
    [6] Krewerth D, Lippmann T, Weidner A, et al. Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime. Int J Fatigue, 2016, 84: 40 doi: 10.1016/j.ijfatigue.2015.11.001
    [7] Bathias C. There is no infinite fatigue life in metallic materials. Fatigue Fract Eng Mater Struct, 1999, 22(7): 559 doi: 10.1046/j.1460-2695.1999.00183.x
    [8] 徐匡迪. 关于洁净钢的若干基本问题. 金属学报, 2009, 45(3):257 doi: 10.3321/j.issn:0412-1961.2009.03.001

    Xu K D. Certain basic subjects on clean steel. Acta Metall Sin, 2009, 45(3): 257 doi: 10.3321/j.issn:0412-1961.2009.03.001
    [9] 姜敏, 王新华, 陈斌, 等. 超低氧特殊钢中非金属夹杂物控制技术//第九届中国钢铁年会论文集. 北京, 2013: 1

    Jiang M, Wang X H, Chen B, et al. Control of non-metallic inclusions in extra low oxygen special steel // Proceedings of the 9th China Steel Conference. Beijing, 2013: 1
    [10] Uesugi T. Recent development of bearing steel in Japan. Tetsu-To-Hagane, 1988, 74(10): 1889 doi: 10.2355/tetsutohagane1955.74.10_1889
    [11] Uesugi T. Recent development of bearing steel in Japan. Trans Iron Steel Inst Jpn, 1988, 28(11): 893 doi: 10.2355/isijinternational1966.28.893
    [12] Uesugi T. Production of high-carbon chromium bearing steel in vertical type continuous caster. Trans Iron Steel Inst Jpn, 1986, 26(7): 614 doi: 10.2355/isijinternational1966.26.614
    [13] Tsubota K, Fukumoto I. Production and quality of high cleanliness bearing steel // Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 637.
    [14] Kawakami K, Taniguchi T, Nakashima K. Generation mechanisms of non-metallic inclusions in high-cleanliness steel. Tetsu-to-Hagané, 2007, 93(12): 743
    [15] Yang J, Wang X H, Jiang M, et al. Effect of calcium treatment on non-metallic inclusions in ultra-low oxygen steel refined by high basicity high Al2O3 slag. J Iron Steel Res Int, 2011, 18(7): 8 doi: 10.1016/S1006-706X(11)60083-6
    [16] 徐匡迪, 肖丽俊. 特殊钢精炼中的脱氧及夹杂物控制. 钢铁, 2012, 47(10):1

    Xu K D, Xiao L J. Deoxidation and inclusion control in special steel refining. Iron Steel, 2012, 47(10): 1
    [17] 杨虎林, 何平, 翟玉春. 高品质轴承钢超低氧含量和非金属夹杂物控制的进展. 特殊钢, 2013, 34(2):16 doi: 10.3969/j.issn.1003-8620.2013.02.005

    Yang H L, He P, Zhai Y C. Progress on control of ultra-low-oxygen content and non-metallic inclusions in high quality bearing steel. Special Steel, 2013, 34(2): 16 doi: 10.3969/j.issn.1003-8620.2013.02.005
    [18] 陈天明. 超低氧齿轮钢非金属夹杂物控制热力学计算及应用. 钢铁, 2011, 46(4):26

    Chen T M. Thermodynamic calculation and application of non-metallic inclusions for ultra-low-oxygen gear steel. Iron Steel, 2011, 46(4): 26
    [19] 王新华, 李金柱, 姜敏, 等. 高端重要用途特殊钢非金属夹杂物控制技术研究. 炼钢, 2017, 33(2):50

    Wang X H, Li J Z, Jiang M, et al. Investigation on technology of non-metallic inclusion control for high grade special steels of important uses. Steelmaking, 2017, 33(2): 50
    [20] Ohnishi T, Shiwaku K, Kawasaki S, et al. Production of high carbon chromium bearing steel in BOF-CC process. Tetsu-to-Hagané, 1987, 73(3): 513
    [21] 魏鹏远, 姜敏, 杨叠, 等. 高速铁路车轴用25CrMoVNi超低氧钢RH精炼过程非金属夹杂物的行为. 特殊钢, 2015, 36(3):1 doi: 10.3969/j.issn.1003-8620.2015.03.001

    Wei P Y, Jiang M, Yang D, et al. Behavior of nonmetallic inclusions in ultra-low oxygen steel 25CrMoVNi for high speed rail axles during RH refining process. Special Steel, 2015, 36(3): 1 doi: 10.3969/j.issn.1003-8620.2015.03.001
    [22] 杨俊, 杜江, 陈波涛, 等. 超低氧精炼时钙处理对氧化物夹杂的影响. 钢铁, 2015, 50(1):19

    Yang J, Du J, Chen B T, et al. Influence of calcium treatment on oxide inclusions in ultra-low oxygen refining process. Iron Steel, 2015, 50(1): 19
    [23] 杨叠, 姜敏, 雷少龙, 等. 超低氧钢中复合夹杂物形成的实验室研究. 钢铁研究学报, 2014, 26(1):12

    Yang D, Jiang M, Lei S L, et al. Laboratory study on formation of complex inclusions in ultra-low oxygen steel. J Iron Steel Res, 2014, 26(1): 12
    [24] 董文亮, 倪红卫, 张华, 等. 超低氧齿轮钢28MnCr5中镁铝尖晶石夹杂物的控制. 钢铁研究学报, 2015, 27(3):14

    Dong W L, Ni H W, Zhang H, et al. Control of magnesia-alumina spinel inclusions in the ultra-low-oxygen gear steel 28MnCr5. J Iron Steel Res, 2015, 27(3): 14
    [25] 于会香, 邵肖静, 张静, 等. 采用ASPEX扫描电镜研究钢中总氧和非金属夹杂物的定量关系. 工程科学学报, 2015, 37(增刊 1):35

    Yu H X, Shao X J, Zhang J, et al. Study on the quantitative relationship between total oxygen content and non-metallic inclusion in steel with ASPEX SEM. Chin J Eng, 2015, 37(Suppl 1): 35
    [26] Murakami Y, Toriyama T, Coudert E. Instructions for a new method of inclusion rating and correlations with the fatigue limit. J Test Eval, 1994, 22(4): 318 doi: 10.1520/JTE11840J
    [27] Beretta S, Murakami Y. Statistical analysis of defects for fatigue strength prediction and quality control of materials. Fatigue Fract Eng Mater Struct, 1998, 21(9): 1049 doi: 10.1046/j.1460-2695.1998.00104.x
    [28] Shi G, Atkinson H V, Sellars C M, et al. Comparison of extreme value statistics methods for predicting maximum inclusion size in clean steels. Ironmaking Steelmaking, 1999, 26(4): 239 doi: 10.1179/030192399677095
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  937
  • HTML全文浏览量:  289
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 网络出版日期:  2021-01-07
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回