• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气氛保护电渣重熔过程中氧化物–CaS复合夹杂物的演变

刘伟建 史成斌 徐昊驰 郑顶立 吕士刚 李晶 郭宝善

刘伟建, 史成斌, 徐昊驰, 郑顶立, 吕士刚, 李晶, 郭宝善. 气氛保护电渣重熔过程中氧化物–CaS复合夹杂物的演变[J]. 工程科学学报, 2020, 42(S): 109-118. doi: 10.13374/j.issn2095-9389.2020.03.12.s08
引用本文: 刘伟建, 史成斌, 徐昊驰, 郑顶立, 吕士刚, 李晶, 郭宝善. 气氛保护电渣重熔过程中氧化物–CaS复合夹杂物的演变[J]. 工程科学学报, 2020, 42(S): 109-118. doi: 10.13374/j.issn2095-9389.2020.03.12.s08
LIU Wei-jian, SHI Cheng-bin, XU Hao-chi, ZHENG Ding-li, LÜ Shi-gang, LI Jing, GUO Bao-shan. Evolution of oxide–CaS complex inclusions during protective atmosphere electroslag remelting[J]. Chinese Journal of Engineering, 2020, 42(S): 109-118. doi: 10.13374/j.issn2095-9389.2020.03.12.s08
Citation: LIU Wei-jian, SHI Cheng-bin, XU Hao-chi, ZHENG Ding-li, LÜ Shi-gang, LI Jing, GUO Bao-shan. Evolution of oxide–CaS complex inclusions during protective atmosphere electroslag remelting[J]. Chinese Journal of Engineering, 2020, 42(S): 109-118. doi: 10.13374/j.issn2095-9389.2020.03.12.s08

气氛保护电渣重熔过程中氧化物–CaS复合夹杂物的演变

doi: 10.13374/j.issn2095-9389.2020.03.12.s08
基金项目: 国家自然科学基金资助项目(51874026,52074027)
详细信息
    通讯作者:

    E-mail: chengbin.shi@ustb.edu.cn

  • 中图分类号: TF769.2

Evolution of oxide–CaS complex inclusions during protective atmosphere electroslag remelting

More Information
  • 摘要: 利用扫描电镜分析了自耗电极和电渣重熔钢中夹杂物的特征,结合热力学计算,分析了氧硫复合夹杂物在电渣重熔过程中的转变机理。结果表明,电渣重熔采用气氛保护结合脱氧操作可以将自耗电极全氧质量分数由0.0017%降低至0.0008%。电渣重熔之后钢中小于3 μm夹杂物的比例显著增加。自耗电极中的夹杂物为CaS与含质量分数3%和11%左右MgO的CaO–Al2O3–SiO2–MgO结合的两类复合夹杂物。电渣过程未被去除的氧化物夹杂中的SiO2被钢液中酸溶铝还原,保留至电渣锭中。电渣锭中含约1%MgO和2%SiO2且成分均匀的CaO–Al2O3–SiO2–MgO是在电渣过程中新生的夹杂物。自耗电极中的CaS通过分解为钢液中溶解Ca和S,以及通过与液态氧化物夹杂中Al2O3反应的途径在电渣过程被去除。电渣锭中低熔点氧化物夹杂周围环状CaS是钢液凝固过程中溶解S、酸溶铝Al与氧化物夹杂中CaO的反应产物,高熔点氧化物夹杂周围环状CaS是钢液凝固过程中Ca和S偏析后反应新生的夹杂物。复合夹杂物中补丁状CaS是在电渣重熔钢液冷却过程中由复合夹杂物熔体中析出的。
  • 图  1  自耗电极和电渣锭中夹杂物的尺寸分布

    Figure  1.  Size distribution of inclusions in the consumable steel and remelted steel

    图  2  自耗电极中典型夹杂物的元素面分布(a,b,c)和EDS谱图(d,e)(图(d)和(e)中的EDS谱图分别对应图(a)和(c)中夹杂物的EDS点分析)

    Figure  2.  Element mappings (a,b,c) and EDS spectra (d,e) of complex inclusions in the consumable steel electrode (EDS spectra in (d) and (e) correspond to the inclusions shown in (a) and (c), respectively).

    图  3  自耗电极中氧化物夹杂在CaO–Al2O3–SiO2三元相图中的成分分布。(a)3%MgO;(b)11%MgO

    Figure  3.  Composition distribution of oxide inclusions in steel electrode on the CaO–Al2O3–SiO2 phase diagram: (a) 3%MgO; (b) 11%MgO

    图  4  电渣锭中典型夹杂物的元素面分布(a,b,c,d)和EDS谱图(e,f)(图(e)和(f)中的EDS谱图分别对应图(a)和(d)中夹杂物的EDS点分析)

    Figure  4.  Element mappings (a,b,c,d) and EDS spectra (e,f) of complex inclusions in the remelted ingot (EDS spectra in (e) and (f) correspond to the inclusions shown in (a) and (d), respectively)

    图  5  电渣锭中氧化物夹杂在CaO–Al2O3–SiO2三元相图中的成分分布。(a)3%MgO;(b)11%MgO

    Figure  5.  Composition distribution of oxide inclusions in the remelted ingot on the CaO–Al2O3–SiO2 phase diagram: (a) 3%MgO; (b) 11%MgO

    图  6  氧化物夹杂中SiO2与酸溶铝[Al]s反应的吉布斯自由能变化值随温度的变化

    Figure  6.  Gibbs free energy change for the reaction between SiO2 in the oxide inclusion and dissolved aluminum in liquid steel against the temperature

    图  7  氧化物夹杂中MgO与酸溶铝[Al]s反应的吉布斯自由能变化值随温度的变化

    Figure  7.  Gibbs free energy change for the reaction between MgO in the oxide inclusion and dissolved aluminum in liquid steel against the temperature

    图  8  CaO–Al2O3–SiO2–MgO夹杂物的硫化物容量随温度的变化

    Figure  8.  Dependence of the sulfide capacity of CaO–Al2O3–SiO2–MgO inclusion on temperature

    表  1  自耗电极的化学成分(质量分数)

    Table  1.   Chemical composition of the consumable electrode and remelted ingot %

    CSiMnSNiCrVMoCaT.OAlMgN
    0.391.150.420.00220.165.670.971.470.00080.00170.01500.00030.0083
    下载: 导出CSV

    表  2  电渣锭的化学成分(质量分数)

    Table  2.   Chemical composition of the remelted ingot %

    CSiMnSNiCrVMoCaT.OAlMgN
    0.391.060.420.00160.165.670.971.470.00050.00080.01600.00020.0088
    下载: 导出CSV

    表  3  采用的一阶活度相互作用系数数据[11, 2122]

    Table  3.   First-order interaction parameters $\mathop e\nolimits_i^j $ used in the present calculation

    $\mathop e\nolimits_i^j $CSiMnSNiCrVCaOAlN
    Al0.0910.0560.00350.035–0.0290.0096–0.047–1.980.045–0.058
    Si0.180.110.0020.0560.005–0.00030.025–0.067–0.230.0580.09
    下载: 导出CSV

    表  4  采用的一阶活度相互作用系数$e_i^j$[20, 22, 29]

    Table  4.   First-order interaction parameters $e_i^j$ used in the present study[20, 22, 29]

    $\mathop e\nolimits_{\rm{i}}^j $CSiMnSNiCrVMoCaOAl
    Ca–0.34–0.096–0.0156–140–0.0440.014–0.002–9000–0.072
    S0.1110.075–0.026–0.046–0.0105–0.0190.0027–110–0.270.041
    Mg0.15–0.096–0.0120.022560–0.27
    下载: 导出CSV

    表  5  ξ的计算参数

    Table  5.   Parameters used for calculating ξ

    Unary reactionξi
    MgO9573.07326
    Al2O3157705.276
    SiO2168872.847
    CaO–3.3099425×104
    Binary reactionξmix
    Al2O3–CaO${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ {98282.7968 + 55.07340941T} \right]$
    Al2O3–SiO2${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {186850.468} \right]$
    CaO–SiO2${y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {97271.7695 + 72.874T} \right]$
    MgO–SiO2${y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {69740.322 - 224.084556T} \right]$
    Ternary reactionξmix
    Al2O3–MgO–CaO${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ {4165955.5 - 1066.5663T - {\rm{3040801}}{\rm{.89}}{y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}} \right]$
    Al2O3– SiO2–CaO${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ { - 2035792.64 + {\rm{686}}{\rm{.044695}}T} \right]$
    Al2O3–SiO2–MgO${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot \left[ {{\rm{156192}}{\rm{.588}} - {\rm{290}}{\rm{.498555}}T{\rm{ + 949447}}{\rm{.247}}{y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}} \right]$
    SiO2–MgO–CaO${y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ { - {\rm{1526497}}{\rm{.71 + 625}}{\rm{.662842}}T{\rm{ + 1485255}}{\rm{.98}}{y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}}} \right]$
    下载: 导出CSV
  • [1] Shi C B. Deoxidation of electroslag remelting (ESR) — a review. ISIJ Int, 2020, 60(6): 1083 doi: 10.2355/isijinternational.ISIJINT-2019-661
    [2] 傅杰, 朱觉. 电渣重熔过程中氧化物夹杂的变化. 金属学报, 1964, 7(3):250

    Fu J, Zhu J. Change in the oxide inclusions during electroslag remelting. Acta Metall Sin, 1964, 7(3): 250
    [3] Kay D A R, Pomfret R J. Removal of oxide inclusions during ac electroslag remelting. J Iron Steel Inst, 1971, 209(12): 962
    [4] Mitchell A. Oxide inclusion behavior during consumable electrode remelting. Ironmaking Steelmaking, 1974, 1(3): 172
    [5] 李正邦, 周文辉, 李谊大. 电渣重熔去除夹杂的机理. 钢铁, 1980, 15(1):20

    Li Z B, Zhou W H, Li Y D. Mechanism of removal of non-metallic inclusions in the ESR process. Iron Steel, 1980, 15(1): 20
    [6] 周德光, 陈希春, 傅杰, 等. 电渣重熔与连铸轴承钢中的夹杂物. 北京科技大学学报, 2000, 22(1):26 doi: 10.3321/j.issn:1001-053X.2000.01.008

    Zhou D G, Chen X C, Fu J, et al. Inclusions in electroslag remelting and continuous casting bearing steels. J Univ Sci Technol Beijing, 2000, 22(1): 26 doi: 10.3321/j.issn:1001-053X.2000.01.008
    [7] Medina S F, Cores A. Thermodynamic aspects in the manufacturing of microalloyed steels by the electroslag remelting process. ISIJ Int, 1993, 33(12): 1244 doi: 10.2355/isijinternational.33.1244
    [8] Mitchell A, Reyes-Carmona F, Samuelsson E. The deoxidation of low-alloy steel ingots during ESR. Trans Iron Steel Inst Jpn, 1984, 24(7): 547 doi: 10.2355/isijinternational1966.24.547
    [9] Dong Y W, Jiang Z H, Cao Y L, et al. Effect of slag on inclusions during electroslag remelting process of die steel. Metall Mater Trans B, 2014, 45(4): 1315 doi: 10.1007/s11663-014-0070-7
    [10] Schneider R S E, Molnar M, Gelder S, et al. Effect of the slag composition and a protective atmosphere on chemical reactions and non-metallic inclusions during electro-slag remelting of a hot-work tool steel. Steel Res Int, 2018, 89(10): 1800161 doi: 10.1002/srin.201800161
    [11] Shi C B, Wang H, Li J. Effects of reoxidation of liquid steel and slag composition on the chemistry evolution of inclusions during electroslag remelting. Metall Mater Trans B, 2018, 49(4): 1675 doi: 10.1007/s11663-018-1296-6
    [12] Shi C B, Yu W T, Wang H, et al. Simultaneous modification of alumina and MgO·Al2O3 inclusions by calcium treatment during electroslag remelting of stainless tool steel. Metall Mater Trans B, 2017, 48(1): 146 doi: 10.1007/s11663-016-0771-1
    [13] Shi C B, Chen X C, Guo H J, et al. Assessment of oxygen control and its effect on inclusion characteristics during electroslag remelting of die steel. Steel Res Int, 2012, 83(5): 472 doi: 10.1002/srin.201100200
    [14] Shi C B, Chen X C, Guo H J, et al. Control of MgO·Al2O3 spinel inclusions during protective gas electroslag remelting of die steel. Metall Mater Trans B, 2013, 44(2): 378 doi: 10.1007/s11663-012-9780-x
    [15] Shi C B, Zheng D L, Guo B S, et al. Evolution of oxide–sulfide complex inclusions and its correlation with steel cleanliness during electroslag rapid remelting (ESRR) of tool steel. Metall Mater Trans B, 2018, 49(6): 3390 doi: 10.1007/s11663-018-1398-1
    [16] Shi C B, Zhang J X, Zheng X, et al. Review on desulfurization of electroslag remelting (ESR). Int J Miner Metall Mater, 2020 doi: 10.1007/s12613-020-2075-3
    [17] Liu Y, Zhang Z, Li G Q, et al. Evolution of desulfurization and characterization of inclusions in dual alloy ingot processed by electroslag remelting. Steel Res Int, 2017, 88(11): 1700058 doi: 10.1002/srin.201700058
    [18] Li S J, Cheng G G, Miao Z Q, et al. Evolution of oxide Inclusions in G20CrNi2Mo carburized bearing steel during industrial electroslag remelting. ISIJ Int, 2018, 58(10): 1781 doi: 10.2355/isijinternational.ISIJINT-2018-072
    [19] Chang L Z, Shi X F, Cong J Q. Study on mechanism of oxygen increase and countermeasure to control oxygen content during electroslag remelting process. Ironmaking Steelmaking, 2014, 41(3): 182 doi: 10.1179/1743281213Y.0000000114
    [20] Ohta H, Suito H. Activities in CaO–SiO2–Al2O3 slags and deoxidation equilibria of Si and Al. Metall Mater Trans B, 1996, 27(6): 943 doi: 10.1007/s11663-996-0008-9
    [21] Park J H, Lee S B, Kim D S, et al. Thermodynamics of titanium oxide in CaO–SiO2–Al2O3–MgOsatd–CaF2 slag equilibrated with Fe–11mass%Cr melt. ISIJ Int, 2009, 49(3): 337 doi: 10.2355/isijinternational.49.337
    [22] Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int, 2010, 50(10): 1333 doi: 10.2355/isijinternational.50.1333
    [23] Suito H, Inoue R. Thermodynamics on control of inclusions composition in ultraclean steels. ISIJ Int, 1996, 36(5): 528 doi: 10.2355/isijinternational.36.528
    [24] Sigworth G K, Elliott J F. The thermodynamics of liquid dilute iron alloys. Met Sci, 1974, 8(1): 298 doi: 10.1179/msc.1974.8.1.298
    [25] 魏季和, Mitchell A. 交流电渣重熔过程中的成分变化 I. 理论传质模型. 金属学报, 1984, 20(5):261

    Wei J H, Mitchell A. Changes in composition during A.C. ESR – I. theoretical development. Acta Metall Sin, 1984, 20(5): 261
    [26] 史成斌. 气体保护电渣重熔过程中氧和夹杂物的行为与控制研究[学位论文]. 北京: 北京科技大学, 2012

    Shi C B. Behaviour and Control Technique of Oxygen and Inclusions during Protective Gas Electroslag Remelting Process[Dissertation]. Beijing: University of Science and Technology Beijing, 2012
    [27] Fraser M E, Mitchell A. Mass transfer in the electroslag process Pt. 1. Mass-transfer model. Ironmaking Steelmaking, 1976, 3(5): 279
    [28] Mitchell A, Szekely J, Elliott J F. Electroslag Refining. London: The Iron and Steel Institute, 1973
    [29] Ohta H, Suito H. Calcium and magnesium deoxidation in Fe–Ni and Fe–Cr alloys equilibrated with CaO–Al2O3 and CaO–Al2O3–MgO slags. ISIJ Int, 2003, 43(9): 1293 doi: 10.2355/isijinternational.43.1293
    [30] Fukaya H, Miki T. Phase equilibrium between CaO·Al2O3 saturated molten CaO–Al2O3–MnO and (Ca, Mn)S solid solution. ISIJ Int, 2011, 51(12): 2007 doi: 10.2355/isijinternational.51.2007
    [31] Nzotta M M, Du S C, Seetharaman S. Sulphide capacities in some multi component slag systems. ISIJ Int, 1998, 38(11): 1170 doi: 10.2355/isijinternational.38.1170
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  246
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回