Evolution of oxide–CaS complex inclusions during protective atmosphere electroslag remelting
-
摘要: 利用扫描电镜分析了自耗电极和电渣重熔钢中夹杂物的特征,结合热力学计算,分析了氧硫复合夹杂物在电渣重熔过程中的转变机理。结果表明,电渣重熔采用气氛保护结合脱氧操作可以将自耗电极全氧质量分数由0.0017%降低至0.0008%。电渣重熔之后钢中小于3 μm夹杂物的比例显著增加。自耗电极中的夹杂物为CaS与含质量分数3%和11%左右MgO的CaO–Al2O3–SiO2–MgO结合的两类复合夹杂物。电渣过程未被去除的氧化物夹杂中的SiO2被钢液中酸溶铝还原,保留至电渣锭中。电渣锭中含约1%MgO和2%SiO2且成分均匀的CaO–Al2O3–SiO2–MgO是在电渣过程中新生的夹杂物。自耗电极中的CaS通过分解为钢液中溶解Ca和S,以及通过与液态氧化物夹杂中Al2O3反应的途径在电渣过程被去除。电渣锭中低熔点氧化物夹杂周围环状CaS是钢液凝固过程中溶解S、酸溶铝Al与氧化物夹杂中CaO的反应产物,高熔点氧化物夹杂周围环状CaS是钢液凝固过程中Ca和S偏析后反应新生的夹杂物。复合夹杂物中补丁状CaS是在电渣重熔钢液冷却过程中由复合夹杂物熔体中析出的。Abstract: The inclusions in the consumable steel electrode and electroslag remelted steel were characterized using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). The evolution mechanism of oxide–sulfide complex inclusions during electroslag remelting (ESR) was elucidated based on inclusion experimental identification and thermodynamic calculation. The results show that the combination of protective atmosphere and deoxidation operation during ESR lowers the total oxygen content from 0.0017% in the electrode to 0.0008% in the ingot. The number proportion of the inclusions smaller than 3 μm in the steel greatly increases after ESR. The inclusions in the steel electrode are two oxide–sulfide complex types of CaS+CaO–Al2O3–SiO2–MgO containing about 3% MgO and CaS+CaO–Al2O3–SiO2–MgO containing about 11% MgO. SiO2 in the original oxide inclusions that had not been removed in ESRR process was reduced by soluble aluminum in liquid steel, and the products remain in the ESR process until in remelted ingot. The CaO–Al2O3–SiO2–MgO inclusions with uniform elements distribution, which contain about 1%MgO and about 2%SiO2, in the ingot are newly formed oxide inclusions in the ESR. CaS inclusions in the steel electrode were removed during the ESR through dissociating into soluble calcium and sulfur in liquid steel, and in the way of reacting with Al2O3 in liquid oxide inclusions. The shell-type CaS around low-melting-temperature oxide inclusion generated as a result of the reaction between CaO in the oxide inclusion and dissolved aluminum and sulfur in liquid steel during solidification of liquid steel in the ESR process. The shell-type CaS around high-melting-temperature oxide inclusion is the reaction products of enriched soluble Ca and S during solidification of liquid steel. Patch-type CaS in the oxide–sulfide complex inclusion precipitated from the complex inclusion melt during the cooling of liquid steel in the ESR process.
-
Key words:
- non-metallic inclusion /
- sulfide /
- electroslag remelting /
- ultralow oxygen /
- sulfide capacity
-
表 1 自耗电极的化学成分(质量分数)
Table 1. Chemical composition of the consumable electrode and remelted ingot
% C Si Mn S Ni Cr V Mo Ca T.O Al Mg N 0.39 1.15 0.42 0.0022 0.16 5.67 0.97 1.47 0.0008 0.0017 0.0150 0.0003 0.0083 表 2 电渣锭的化学成分(质量分数)
Table 2. Chemical composition of the remelted ingot
% C Si Mn S Ni Cr V Mo Ca T.O Al Mg N 0.39 1.06 0.42 0.0016 0.16 5.67 0.97 1.47 0.0005 0.0008 0.0160 0.0002 0.0088 表 3 采用的一阶活度相互作用系数数据[11, 21–22]
Table 3. First-order interaction parameters
$\mathop e\nolimits_i^j $ used in the present calculation$\mathop e\nolimits_i^j $ C Si Mn S Ni Cr V Ca O Al N Al 0.091 0.056 0.0035 0.035 –0.029 0.0096 — –0.047 –1.98 0.045 –0.058 Si 0.18 0.11 0.002 0.056 0.005 –0.0003 0.025 –0.067 –0.23 0.058 0.09 表 4 采用的一阶活度相互作用系数
$e_i^j$ [20, 22, 29]Table 4. First-order interaction parameters
$e_i^j$ used in the present study[20, 22, 29]$\mathop e\nolimits_{\rm{i}}^j $ C Si Mn S Ni Cr V Mo Ca O Al Ca –0.34 –0.096 –0.0156 –140 –0.044 0.014 — — –0.002 –9000 –0.072 S 0.111 0.075 –0.026 –0.046 — –0.0105 –0.019 0.0027 –110 –0.27 0.041 Mg 0.15 –0.096 — — –0.012 0.022 — — — 560 –0.27 表 5 ξ的计算参数
Table 5. Parameters used for calculating ξ
Unary reaction ξi MgO 9573.07326 Al2O3 157705.276 SiO2 168872.847 CaO –3.3099425×104 Binary reaction ξmix Al2O3–CaO ${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ {98282.7968 + 55.07340941T} \right]$ Al2O3–SiO2 ${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {186850.468} \right]$ CaO–SiO2 ${y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {97271.7695 + 72.874T} \right]$ MgO–SiO2 ${y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {69740.322 - 224.084556T} \right]$ Ternary reaction ξmix Al2O3–MgO–CaO ${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ {4165955.5 - 1066.5663T - {\rm{3040801}}{\rm{.89}}{y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}} \right]$ Al2O3– SiO2–CaO ${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ { - 2035792.64 + {\rm{686}}{\rm{.044695}}T} \right]$ Al2O3–SiO2–MgO ${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot \left[ {{\rm{156192}}{\rm{.588}} - {\rm{290}}{\rm{.498555}}T{\rm{ + 949447}}{\rm{.247}}{y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}} \right]$ SiO2–MgO–CaO ${y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ { - {\rm{1526497}}{\rm{.71 + 625}}{\rm{.662842}}T{\rm{ + 1485255}}{\rm{.98}}{y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}}} \right]$ -
[1] Shi C B. Deoxidation of electroslag remelting (ESR) — a review. ISIJ Int, 2020, 60(6): 1083 doi: 10.2355/isijinternational.ISIJINT-2019-661 [2] 傅杰, 朱觉. 电渣重熔过程中氧化物夹杂的变化. 金属学报, 1964, 7(3):250Fu J, Zhu J. Change in the oxide inclusions during electroslag remelting. Acta Metall Sin, 1964, 7(3): 250 [3] Kay D A R, Pomfret R J. Removal of oxide inclusions during ac electroslag remelting. J Iron Steel Inst, 1971, 209(12): 962 [4] Mitchell A. Oxide inclusion behavior during consumable electrode remelting. Ironmaking Steelmaking, 1974, 1(3): 172 [5] 李正邦, 周文辉, 李谊大. 电渣重熔去除夹杂的机理. 钢铁, 1980, 15(1):20Li Z B, Zhou W H, Li Y D. Mechanism of removal of non-metallic inclusions in the ESR process. Iron Steel, 1980, 15(1): 20 [6] 周德光, 陈希春, 傅杰, 等. 电渣重熔与连铸轴承钢中的夹杂物. 北京科技大学学报, 2000, 22(1):26 doi: 10.3321/j.issn:1001-053X.2000.01.008Zhou D G, Chen X C, Fu J, et al. Inclusions in electroslag remelting and continuous casting bearing steels. J Univ Sci Technol Beijing, 2000, 22(1): 26 doi: 10.3321/j.issn:1001-053X.2000.01.008 [7] Medina S F, Cores A. Thermodynamic aspects in the manufacturing of microalloyed steels by the electroslag remelting process. ISIJ Int, 1993, 33(12): 1244 doi: 10.2355/isijinternational.33.1244 [8] Mitchell A, Reyes-Carmona F, Samuelsson E. The deoxidation of low-alloy steel ingots during ESR. Trans Iron Steel Inst Jpn, 1984, 24(7): 547 doi: 10.2355/isijinternational1966.24.547 [9] Dong Y W, Jiang Z H, Cao Y L, et al. Effect of slag on inclusions during electroslag remelting process of die steel. Metall Mater Trans B, 2014, 45(4): 1315 doi: 10.1007/s11663-014-0070-7 [10] Schneider R S E, Molnar M, Gelder S, et al. Effect of the slag composition and a protective atmosphere on chemical reactions and non-metallic inclusions during electro-slag remelting of a hot-work tool steel. Steel Res Int, 2018, 89(10): 1800161 doi: 10.1002/srin.201800161 [11] Shi C B, Wang H, Li J. Effects of reoxidation of liquid steel and slag composition on the chemistry evolution of inclusions during electroslag remelting. Metall Mater Trans B, 2018, 49(4): 1675 doi: 10.1007/s11663-018-1296-6 [12] Shi C B, Yu W T, Wang H, et al. Simultaneous modification of alumina and MgO·Al2O3 inclusions by calcium treatment during electroslag remelting of stainless tool steel. Metall Mater Trans B, 2017, 48(1): 146 doi: 10.1007/s11663-016-0771-1 [13] Shi C B, Chen X C, Guo H J, et al. Assessment of oxygen control and its effect on inclusion characteristics during electroslag remelting of die steel. Steel Res Int, 2012, 83(5): 472 doi: 10.1002/srin.201100200 [14] Shi C B, Chen X C, Guo H J, et al. Control of MgO·Al2O3 spinel inclusions during protective gas electroslag remelting of die steel. Metall Mater Trans B, 2013, 44(2): 378 doi: 10.1007/s11663-012-9780-x [15] Shi C B, Zheng D L, Guo B S, et al. Evolution of oxide–sulfide complex inclusions and its correlation with steel cleanliness during electroslag rapid remelting (ESRR) of tool steel. Metall Mater Trans B, 2018, 49(6): 3390 doi: 10.1007/s11663-018-1398-1 [16] Shi C B, Zhang J X, Zheng X, et al. Review on desulfurization of electroslag remelting (ESR). Int J Miner Metall Mater, 2020 doi: 10.1007/s12613-020-2075-3 [17] Liu Y, Zhang Z, Li G Q, et al. Evolution of desulfurization and characterization of inclusions in dual alloy ingot processed by electroslag remelting. Steel Res Int, 2017, 88(11): 1700058 doi: 10.1002/srin.201700058 [18] Li S J, Cheng G G, Miao Z Q, et al. Evolution of oxide Inclusions in G20CrNi2Mo carburized bearing steel during industrial electroslag remelting. ISIJ Int, 2018, 58(10): 1781 doi: 10.2355/isijinternational.ISIJINT-2018-072 [19] Chang L Z, Shi X F, Cong J Q. Study on mechanism of oxygen increase and countermeasure to control oxygen content during electroslag remelting process. Ironmaking Steelmaking, 2014, 41(3): 182 doi: 10.1179/1743281213Y.0000000114 [20] Ohta H, Suito H. Activities in CaO–SiO2–Al2O3 slags and deoxidation equilibria of Si and Al. Metall Mater Trans B, 1996, 27(6): 943 doi: 10.1007/s11663-996-0008-9 [21] Park J H, Lee S B, Kim D S, et al. Thermodynamics of titanium oxide in CaO–SiO2–Al2O3–MgOsatd–CaF2 slag equilibrated with Fe–11mass%Cr melt. ISIJ Int, 2009, 49(3): 337 doi: 10.2355/isijinternational.49.337 [22] Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int, 2010, 50(10): 1333 doi: 10.2355/isijinternational.50.1333 [23] Suito H, Inoue R. Thermodynamics on control of inclusions composition in ultraclean steels. ISIJ Int, 1996, 36(5): 528 doi: 10.2355/isijinternational.36.528 [24] Sigworth G K, Elliott J F. The thermodynamics of liquid dilute iron alloys. Met Sci, 1974, 8(1): 298 doi: 10.1179/msc.1974.8.1.298 [25] 魏季和, Mitchell A. 交流电渣重熔过程中的成分变化 I. 理论传质模型. 金属学报, 1984, 20(5):261Wei J H, Mitchell A. Changes in composition during A.C. ESR – I. theoretical development. Acta Metall Sin, 1984, 20(5): 261 [26] 史成斌. 气体保护电渣重熔过程中氧和夹杂物的行为与控制研究[学位论文]. 北京: 北京科技大学, 2012Shi C B. Behaviour and Control Technique of Oxygen and Inclusions during Protective Gas Electroslag Remelting Process[Dissertation]. Beijing: University of Science and Technology Beijing, 2012 [27] Fraser M E, Mitchell A. Mass transfer in the electroslag process Pt. 1. Mass-transfer model. Ironmaking Steelmaking, 1976, 3(5): 279 [28] Mitchell A, Szekely J, Elliott J F. Electroslag Refining. London: The Iron and Steel Institute, 1973 [29] Ohta H, Suito H. Calcium and magnesium deoxidation in Fe–Ni and Fe–Cr alloys equilibrated with CaO–Al2O3 and CaO–Al2O3–MgO slags. ISIJ Int, 2003, 43(9): 1293 doi: 10.2355/isijinternational.43.1293 [30] Fukaya H, Miki T. Phase equilibrium between CaO·Al2O3 saturated molten CaO–Al2O3–MnO and (Ca, Mn)S solid solution. ISIJ Int, 2011, 51(12): 2007 doi: 10.2355/isijinternational.51.2007 [31] Nzotta M M, Du S C, Seetharaman S. Sulphide capacities in some multi component slag systems. ISIJ Int, 1998, 38(11): 1170 doi: 10.2355/isijinternational.38.1170 -