• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高锰酸钾强化海藻酸钠抑制闪锌矿浮选的作用及机理

冯博 钟春晖 张良柱 彭金秀 郭宇涛 王涛 宁湘菡 汪惠惠

冯博, 钟春晖, 张良柱, 彭金秀, 郭宇涛, 王涛, 宁湘菡, 汪惠惠. 高锰酸钾强化海藻酸钠抑制闪锌矿浮选的作用及机理[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.03.16.002
引用本文: 冯博, 钟春晖, 张良柱, 彭金秀, 郭宇涛, 王涛, 宁湘菡, 汪惠惠. 高锰酸钾强化海藻酸钠抑制闪锌矿浮选的作用及机理[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.03.16.002
FENG Bo, ZHONG Chun-hui, ZHANG Liang-zhu, PENG Jin-xiu, GUO Yu-tao, WANG Tao, NING Xiang-han, WANG Hui-hui. Effect and mechanism of potassium-permanganate strengthening and sodium-alginate depression of sphalerite flotation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.03.16.002
Citation: FENG Bo, ZHONG Chun-hui, ZHANG Liang-zhu, PENG Jin-xiu, GUO Yu-tao, WANG Tao, NING Xiang-han, WANG Hui-hui. Effect and mechanism of potassium-permanganate strengthening and sodium-alginate depression of sphalerite flotation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.03.16.002

高锰酸钾强化海藻酸钠抑制闪锌矿浮选的作用及机理

doi: 10.13374/j.issn2095-9389.2020.03.16.002
基金项目: 国家自然科学基金资助项目(51664020);江西省自然科学基金资助项目(20181BAB206021);矿物加工科学与技术国家重点实验室开放基金资助项目(BGRIMM-KJSKL-2020-12)
详细信息
    通讯作者:

    E-mail:fengbo319@163.com

  • 中图分类号: TD952

Effect and mechanism of potassium-permanganate strengthening and sodium-alginate depression of sphalerite flotation

More Information
  • 摘要: 通过浮选试验、X射线光电子能谱(XPS)分析和吸附量测试分析,研究了高锰酸钾和海藻酸钠对黄铜矿、方铅矿和闪锌矿三种硫化矿物浮选的影响,考察了高锰酸钾强化海藻酸钠抑制闪锌矿浮选的作用机理。浮选试验结果表明,单独使用高锰酸钾或海藻酸钠均无法实现对闪锌矿的选择性抑制。同时添加适量高锰酸钾和海藻酸钠对闪锌矿具有选择性的协同抑制作用,而对黄铜矿和方铅矿浮选的影响较小。XPS分析结果表明,海藻酸钠与闪锌矿表面氧化产生的氧化锌、氢氧化锌或硫酸锌等氧化物发生化学吸附,而不与未氧化的闪锌矿表面发生吸附。吸附量测试结果表明,高锰酸钾对闪锌矿的预先氧化作用显著增加了海藻酸钠在闪锌矿表面的吸附量,因此高锰酸钾可以强化海藻酸钠对闪锌矿的抑制作用。
  • 图  1  硫化矿物样品的X射线衍射图谱

    Figure  1.  XRD patterns of sulfide samples

    图  2  海藻酸钠对硫化矿物浮选的影响(c(PBX)=1×10−4 mol·L−1c(MIBC)=1×10−4 mol·L−1;pH值为7;c为浓度)

    Figure  2.  Effect of sodium alginate dosage on the flotation of sulfides (c(PBX)=1×10−4 mol·L−1; c(MIBC)=1×10−4 mol·L−1; pH is 7;c is molar concentration)

    图  3  高锰酸钾对硫化矿物浮选的影响(c(PBX)=1×10−4 mol·L−1c(MIBC)=1×10−4 mol·L−1; pH值为7)

    Figure  3.  Effect of oxidizer dosage on the flotation of sulfides (c(PBX)=1×10−4 mol·L−1; c(MIBC)=1×10−4 mol·L−1; pH is 7)

    图  4  高锰酸钾和海藻酸钠对硫化矿浮选的影响(c(PBX)=1×10−4 mol·L−1c(MIBC)=1×10−4 mol·L−1; c(KMnO4)=1.63×10−3 mol·L−1;pH值为7)

    Figure  4.  Effect of oxidizer and sodium alginate on the flotation of sulfides (c(PBX)=1×10−4 mol·L−1; c(MIBC)=1×10−4 mol·L−1; c(KMnO4)=1.63×10−3 mol·L−1; pH is 7)

    图  5  闪锌矿表面全谱扫描谱图

    Figure  5.  XPS spectra of sphalerite

    Note: a—sphalerite; b—sphalerite with sodium alginate; c—sphalerite with KMnO4; d—sphalerite with KMnO4 and sodium alginate.

    图  6  闪锌矿表面锌元素的窄区扫描谱图。(a)闪锌矿;(b)闪锌矿+海藻酸钠;(c)闪锌矿+高锰酸钾;(d)闪锌矿+高锰酸钾+海藻酸钠

    Figure  6.  Resolved narrow-scan Zn 2p spectra: (a) sphalerite; (b) sphalerite with sodium alginate; (c) sphalerite with KMnO4; (d) sphalerite with KMnO4 and sodium alginate

    图  7  海藻酸钠在闪锌矿表面的吸附行为(c(KMnO4) =1.63×10−3 mol·L−1; pH值为7)

    Figure  7.  Adsorption behavior of sodium alginate on sphalerite (c(KMnO4)=1.63×10−3 mol·L−1; pH is 7)

    表  1  硫化矿物样品的化学组成分析

    Table  1.   Chemical compositions of sulfide samples %

    SampleElemental mass concentrationPurity
    CuTFeSZnPb
    Chalcopyrite32.9129.0633.2595.23
    Galena13.1184.7197.82
    Sphalerite31.5664.3895.95
    下载: 导出CSV

    表  2  药剂作用前后闪锌矿表面元素的原子数分数

    Table  2.   Atomic content of elements on the surface of sphalerite before and after its interaction with reagents %

    SampleZn 2pS 2pC 1sO 1s
    Sphalerite36.4632.9514.4014.99
    Sphalerite+sodium alginate14.9215.7039.0830.30
    Sphalerite+KMnO420.7517.0527.2534.95
    Sphalerite+KMnO4+sodium alginate11.9811.6538.8237.56
    下载: 导出CSV
  • [1] 杨荣林. 浅析我国铅锌矿资源开发现状及可持续发展建议. 矿产资源, 2018(1):148

    Yang R L. Analysis of current situation of lead and zinc mine resources development and suggestions for sustainable development in China. Miner Resour, 2018(1): 148
    [2] 贾仰武. 云南某铜铅锌硫化矿铜铅分离浮选试验研究. 矿冶工程, 2009, 29(4):47 doi: 10.3969/j.issn.0253-6099.2009.04.013

    Jia Y W. Experimental research on copper-lead flotation separation of a Cu-Pb-Zn sulfide ore in Yunnan. Min Metall Eng, 2009, 29(4): 47 doi: 10.3969/j.issn.0253-6099.2009.04.013
    [3] 王明燕, 郜伟, 王玲. 云南某金多金属矿的工艺矿物学研究. 有色金属(选矿部分), 2016(3):1

    Wang M Y, Gao W, Wang L. Process mineralogy study on an Au polymetallic ore in Yunnan. Nonferrous Met (Miner Process Sect), 2016(3): 1
    [4] 冉银华, 肖东升, 杜建明, 等. 某铜铅锌多金属硫化矿浮选试验研究. 现代矿业, 2019(4):114 doi: 10.3969/j.issn.1674-6082.2019.04.030

    Ran Y H, Xiao D S, Du J M, et al. Study on flotation test of a copper-lead-zinc polymetallic sulfide ore. Mod Min, 2019(4): 114 doi: 10.3969/j.issn.1674-6082.2019.04.030
    [5] 简胜, 孙伟, 胡岳华. 内蒙古某复杂多金属硫化矿选矿技术研究. 矿冶工程, 2019, 39(4):50 doi: 10.3969/j.issn.0253-6099.2019.04.012

    Jian S, Sun W, Hu Y H. Beneficiation technique for complex polymetallic sulfide ore from Inner Mongolia. Min Metall Eng, 2019, 39(4): 50 doi: 10.3969/j.issn.0253-6099.2019.04.012
    [6] Deng J S, Mao Y B, Wen S M, et al. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals. Int J Miner Metall Mater, 2015, 22(2): 111
    [7] Sun W, Su J F, Zhang G, et al. Separation of sulfide lead-zinc-silver ore under low alkalinity condition. J Cent South Univ, 2012, 19(8): 2307
    [8] Wang H, Wen S M, Han G, et al. Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate. Miner Eng, 2020, 146: 106132
    [9] 孙伟, 董艳红, 张刚. 硫化钠在铜铅分离中的应用. 金属矿山, 2010(10):44

    Sun W, Dong Y H, Zhang G. Application of sodium sulphide in the separation of lead-copper. Met Mine, 2010(10): 44
    [10] Shen W Z, Fornasiero D, Ralston J. Flotation of sphalerite and pyrite in the presence of sodium sulfite. Int J Miner Process, 2001, 63(1): 17
    [11] 薛晨, 魏志聪. 闪锌矿抑制剂的作用机理及研究进展. 矿产综合利用, 2017(3):38 doi: 10.3969/j.issn.1000-6532.2017.03.006

    Xue C, Wei Z C. Reaction mechanism and research progress of depressants in sphalerite flotation. Multipurpose Utiliz Miner Resour, 2017(3): 38 doi: 10.3969/j.issn.1000-6532.2017.03.006
    [12] Laskowski J S, Liu Q, O'Connor C T. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface. Int J Miner Process, 2007, 84(1-4): 59
    [13] Qin W Q, Wei Q, Jiao F, et al. Utilization of polysaccharides as depressants for the flotation separation of copper/lead concentrate. Int J Min Sci Technol, 2013, 23(2): 179
    [14] Wang C T, Liu R Q, Khoso S A, et al. Combined inhibitory effect of calcium hypochlorite and dextrin on flotation behavior of pyrite and galena sulphides. Miner Eng, 2020, 150: 106274
    [15] Sarquis P E, Menendez - Aguado J M, Mahamud M M, et al. Tannins: The organic depressants alternative in selective flotation of sulfides. J Clean Prod, 2014, 84: 723
    [16] Li J M, Song K W, Liu D W, et al. Hydrolyzation and adsorption behaviors of SPH and SCT used as combined depressants in the selective flotation of galena from sphalerite. J Mol Liquids, 2017, 231: 485
    [17] Liu R Z, Qin W Q, Jiao F, et al. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate. Trans Nonferrous Met Soc China, 2016, 26(1): 265
    [18] López-Valdivieso A, Lozano-Ledesma L A, Robledo-Cabrera A, et al. Carboxymethylcellulose (CMC) as PbS depressant in the processing of Pb-Cu bulk concentrates. Adsorption and floatability studies. Miner Eng, 2017, 112: 77
    [19] Chen W, Feng Q M, Zhang G F, et al. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite. Miner Eng, 2017, 113: 1
    [20] 冯博, 张文谱, 郭蔚, 等. 组合捕收剂及海藻酸钠在白钨矿和方解石浮选分离中的作用及机理. 中国有色金属学报, 2019, 29(1):203

    Feng B, Zhang W P, Guo W, et al. Role and mechanism of combined collector and sodium alginate in flotation separation of scheelite and calcite. Chin J Nonferrous Met, 2019, 29(1): 203
    [21] Jiao F, Dong L Y, Qin W Q, et al. Flotation separation of scheelite from calcite using pectin as depressant. Miner Eng, 2019, 136: 120
    [22] Skinner W M, Prestidge C A, Smart R S C. Irradiation effects during XPS studies of Cu(II) activation of zinc sulphide. Surf Interface Anal, 1996, 24(9): 620
    [23] 冯博, 郭宇涛, 王涛, 等. 氧化剂在刺槐豆胶浮选分离方铅矿和闪锌矿中的作用及机理. 中南大学学报(自然科学版), 2020, 51(1):1 doi: 10.11817/j.issn.1672-7207.2020.01.001

    Feng B, Guo Y T, Wang T, et al. Role and mechanism of oxidizer in flotation separation of galena and sphalerite using locust bean gum as depressant. J Cent South Univ Sci Technol, 2020, 51(1): 1 doi: 10.11817/j.issn.1672-7207.2020.01.001
    [24] Feng B, Zhong C H, Zhang L Z, et al. Effect of surface oxidation on the depression of sphalerite by locust bean gum. Miner Eng, 2020, 146: 106142
    [25] Siriwardane R V, Poston J A. Interaction of H2S with zinc titanate in the presence of H2 and CO. Appl Surf Sci, 1990, 45(2): 131
  • 加载中
计量
  • 文章访问数:  1019
  • HTML全文浏览量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 网络出版日期:  2020-12-22

目录

    /

    返回文章
    返回