• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自然场景文本检测技术研究综述

白志程 李擎 陈鹏 郭立晴

白志程, 李擎, 陈鹏, 郭立晴. 自然场景文本检测技术研究综述[J]. 工程科学学报, 2020, 42(11): 1433-1448. doi: 10.13374/j.issn2095-9389.2020.03.24.002
引用本文: 白志程, 李擎, 陈鹏, 郭立晴. 自然场景文本检测技术研究综述[J]. 工程科学学报, 2020, 42(11): 1433-1448. doi: 10.13374/j.issn2095-9389.2020.03.24.002
BAI Zhi-cheng, LI Qing, CHEN Peng, GUO Li-qing. Text detection in natural scenes: a literature review[J]. Chinese Journal of Engineering, 2020, 42(11): 1433-1448. doi: 10.13374/j.issn2095-9389.2020.03.24.002
Citation: BAI Zhi-cheng, LI Qing, CHEN Peng, GUO Li-qing. Text detection in natural scenes: a literature review[J]. Chinese Journal of Engineering, 2020, 42(11): 1433-1448. doi: 10.13374/j.issn2095-9389.2020.03.24.002

自然场景文本检测技术研究综述

doi: 10.13374/j.issn2095-9389.2020.03.24.002
基金项目: 国家自然科学基金资助项目(11296089)
详细信息
    通讯作者:

    E-mail:liqing@ies.ustb.edu.cn

  • 中图分类号: TP18

Text detection in natural scenes: a literature review

More Information
  • 摘要: 文本检测在自动驾驶和跨模态图像检索中具有极为广泛的应用。该技术也是基于光学字符的文本识别任务中重要的前置环节。目前,复杂场景下的文本检测仍极具挑战性。本文对自然场景文本检测进行综述,回顾了针对该问题的主要技术和相关研究进展,并对研究现状进行分析。首先对问题进行概述,分析了自然场景中文本检测的主要特点;接着,介绍了经典的基于连通域分析、基于滑动检测窗的自然场景文本检测技术;在此基础上,综述了近年来较为常用的深度学习文本检测技术;最后,对自然场景文本检测未来可能的研究方向进行展望。
  • 图  1  自然场景示例图片

    Figure  1.  Sample images of nature scenes

    图  2  笔划宽度的定义[13]。(a)一种典型的笔划;(b)笔划边界像素;(c)笔划束上的每个像素

    Figure  2.  Definition of the stroke width[13]: (a) a typical stroke; (b) a pixel on the boundary of the stroke; (c) each pixel along the ray

    图  3  多边形滑动窗口和矩形滑动窗口检测结果比较[25]。(a)多边形滑窗检测结果;(b)矩形滑窗检测结果

    Figure  3.  Comparison of the detection results between polygon sliding windows and rectangular sliding windows[25]: (a) detection results of polygon sliding window; (b) detection result of rectangular sliding window

    图  4  Text Snake表征图示[54]

    Figure  4.  Illustration of the proposed Text Snake representation[54]

    图  5  PixelLink结构图[56]

    Figure  5.  Architecture of PixelLink[56]

    表  1  文本检测常用数据集

    Table  1.   Common datasets for text detection

    DatasetPresenterTypeSample size(Training/Test)LanguageDirection
    CTWTHU, TencentScene32285ChineseHorizontal
    ICDAR2003ICDARScene2276(1110/115)EnglishHorizontal
    ICDAR2011Scene484(229/255)EnglishHorizontal
    Graph522(420/102)EnglishCurve
    ICDAR2013Scene463(229/233)EnglishHorizontal
    Graph551(410/141)EnglishMultiple
    Video28(13/15)English, French, SpanishMultiple
    MSRA-TD500HUSTScene500(300/200)English
    Chinese
    Multiple
    COCO-TextMicrosoftScene63686EnglishMultiple
    RCTW-17HUSTScene12263(8034/4229)ChineseHorizontal
    English
    MLT2017ICDARScene18000(7200/10800)Multi-lingualHorizontal
    MLT2019ICDARScene20000(10000/10000)Multi-lingualHorizontal
    Total-TextUMScene1525(1225/300)EnglishMultiple
    SCUT-CTW1500SCUTScene1500(1000/500)Multi-lingualMultiple
    ArTUM, SCUT, BaiduScene10166(5603/4563)EnglishMultiple
    Chinese
    下载: 导出CSV
  • [1] 戴津. 自然场景中文本检测技术研究综述. 计算机光盘软件与应用, 2013(18):104

    Dai J. Review of research on text detection technology in natural scenes. Comput CD Software Appl, 2013(18): 104
    [2] 卓力, 龙海霞, 彭远帆, 等. 加密域图像处理综述. 北京工业大学学报, 2016, 42(2):174

    Zhuo L, Long H X, Peng Y F, et al. Image processing in encrypted domain: a comprehensive survey. J Beijing Univ Technol, 2016, 42(2): 174
    [3] 樊亚玲. 移动终端自然场景文本检测算法研究[学位论文]. 西安: 西安电子科技大学, 2015

    Fan Y L.Natural Scene Text Detection Algorithm Research Based on Mobile Terminal [Dissertation]. Xi’an: Xidian University, 2015
    [4] 王润民, 桑农, 丁丁, 等. 自然场景图像中的文本检测综述. 自动化学报, 2018, 44(12):2113

    Wang R M, Sang N, Ding D, et al. Text detection in natural scene image: a survey. Acta Autom Sin, 2018, 44(12): 2113
    [5] 李建更, 李立杰, 张岩, 等. 适用于具有多分类器的卷积神经网络训练方法. 北京工业大学学报, 2018, 44(10):1291

    Li J G, Li L J, Zhang Y, et al. A method which is suitable for the training of convolutional neural networks with multiple classifiers. J Beijing Univ Technol, 2018, 44(10): 1291
    [6] 李晓理, 张博, 王康, 等. 人工智能的发展及应用. 北京工业大学学报, 2020, 46(6):583

    Li X L, Zhang B, Wang K, et al. The development and application of artificial intelligence. J Beijing Univ Technol, 2020, 46(6): 583
    [7] Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell, 1986, 8(6): 679
    [8] Liu C M, Wang C H, Dai R W. Text detection in images based on unsupervised classification of edge-based features // Eighth International Conference on Document Analysis and Recognition (ICDAR'05). Seoul, 2005: 610
    [9] Sobel I E. Camera Models and Machine Perception [Dissertation]. San Francisco: Stanford University, 1970
    [10] Shivakumara P, Phan T Q, Tan C L. A laplacian approach to multi-oriented text detection in video. IEEE Trans Pattern Anal Mach Intell, 2011, 33(2): 412 doi: 10.1109/TPAMI.2010.166
    [11] Yu C, Song Y, Meng Q, et al. Text detection and recognition in natural scene with edge analysis. IET Computer Vision, 2015, 9(4): 603 doi: 10.1049/iet-cvi.2013.0307
    [12] Buta M, Neumann L, Matas J. FASText: Efficient unconstrained scene text detector // Proceedings of the IEEE International Conference on Computer Vision. Santiago, 2015: 1206
    [13] Epshtein B, Ofek E, Wexler Y. Detecting text in natural scenes with stroke width transform // 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. California, 2010: 2963
    [14] Yao C, Bai X, Liu W Y, et al. Detecting texts of arbitrary orientations in natural images // 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, 2012: 1083
    [15] Huang W L, Lin Z, Yang J C, et al. Text localization in natural images using stroke feature transform and text covariance descriptors // Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, 2013: 1241
    [16] Matas J, Chum O, Urban M, et al. Robust wide-baseline stereo from maximally stable extremal regions. Image Vision Computing, 2004, 22(10): 761 doi: 10.1016/j.imavis.2004.02.006
    [17] Gomez L, Karatzas D. Object proposals for text extraction in the wild // 2015 13th International Conference on Document Analysis and Recognition (ICDAR). Tunis, 2015: 206
    [18] Neumann L, Matas J. A method for text localization and recognition in real-world images // 10th Asian Conference on Computer Vision. Queenstown, 2010: 770
    [19] Neumann L, Matas J. Real-time scene text localization and recognition // 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, 2012: 3538
    [20] Sun L, Huo Q. A component-tree based method for user-intention guided text extraction // Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Tsukuba, 2012: 633
    [21] Sun L, Huo Q, Jia W, et al. A robust approach for text detection from natural scene images. Pattern Recognit, 2015, 48(9): 2906 doi: 10.1016/j.patcog.2015.04.002
    [22] 周鹏飞. 自然场景图像中的文本检测与识别技术研究[学位论文]. 西安: 西安理工大学, 2019

    Zhou P F.Research on Text Detection and Recognition in Natural Scene Images [Dissertation]. Xi’an: Xi’an University of Technology, 2019
    [23] Chen X R, Yuille A L. Detecting and reading text in natural scenes // Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, 2004: II
    [24] Lee J J, Lee P H, Lee S W, et al. AdaBoost for text detection in natural scene // 2011 International Conference on Document Analysis and Recognition. Beijing, 2011: 429
    [25] Liu Y L, Jin L W. Deep matching prior network: Toward tighter multi-oriented text detection // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 1962
    [26] 尹宝才, 王文通, 王立春. 深度学习研究综述. 北京工业大学学报, 2015, 41(1):48

    Yin B C, Wang W T, W L C. Review of deep learning research. J Beijing Univ Technol, 2015, 41(1): 48
    [27] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137 doi: 10.1109/TPAMI.2016.2577031
    [28] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector // European Conference on Computer Vision. Amsterdam, 2016: 21
    [29] Dai J F, Li Y, He K M, et al. R-FCN: object detection via region-based fully convolutional networks// Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, 2016: 379
    [30] 余峥, 王晴晴, 吕岳. 基于特征融合网络的自然场景文本检测. 计算机系统应用, 2018, 27(10):1

    Yu Z, Wang Q Q, Lü Y. Scene text detection based on feature fusion network. Comput Syst Appl, 2018, 27(10): 1
    [31] Karatzas D, Mestre S R, Mas J, et al. ICDAR 2011 robust reading competition-challenge 1: reading text in born-digital images (web and email) // 2011 International Conference on Document Analysis and Recognition. Beijing, 2011: 1485
    [32] Karatzas D, Shafait F, Uchida S, et al. ICDAR 2013 robust reading competition // 2013 12th International Conference on Document Analysis and Recognition. Washington, 2013: 1484
    [33] Ma J Q, Shao W Y, Ye H, et al. Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans Multimedia, 2018, 20(11): 3111 doi: 10.1109/TMM.2018.2818020
    [34] Jiang Y Y, Zhu X Y, Wang X B, et al. R2CNN: rotational region CNN for orientation robust scene text detection [J/OL]. arXiv preprint (2017-06-30)[2020-03-01]. https://arxiv.org/abs/1706.09579
    [35] Zhong Z Y, Sun L, Huo Q. An anchor-free region proposal network for Faster R-CNN-based text detection approaches. Int J Doc Anal Recognit, 2019, 22(3): 315 doi: 10.1007/s10032-019-00335-y
    [36] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv preprint (2015-04-10)[2020-03-01]. https://arxiv.org/abs/1409.1556
    [37] Shi B G, Bai X, Belongie S. Detecting oriented text in natural images by linking segments // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 2550
    [38] Liao M H, Shi B G, Bai X, et al. TextBoxes: a fast text detector with a single deep neural network // Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, 2017: 4161
    [39] Liao M H, Shi B G, Bai X. TextBoxes++: a single-shot oriented scene text detector. IEEE Trans Image Process, 2018, 27(8): 3676 doi: 10.1109/TIP.2018.2825107
    [40] He P, Huang W L, He T, et al. Single shot text detector with regional attention // Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, 2017: 3047
    [41] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning // Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, 2017: 4278
    [42] Liao M H, Zhu Z, Shi B G, et al. Rotation-sensitive regression for oriented scene text detection // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 5909
    [43] Liu X, Zhang R, Zhou Y S, et al. Scene text detection with feature pyramid network and linking segments // 2019 International Conference on Document Analysis and Recognition (ICDAR). Sydney, 2019: 508
    [44] Zhang S, Liu Y L, Jin L W, et al. Feature enhancement network: a refined scene text detector // Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans, 2018: 2612
    [45] Tian Z, Huang W L, He T, et al. Detecting text in natural image with connectionist text proposal network // European Conference on Computer Vision. Munich, 2016: 56
    [46] Wang X B, Jiang Y Y, Luo Z B, et al. Arbitrary shape scene text detection with adaptive text region representation // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 6449
    [47] He K M, Gkioxari G, Dollár P, et al. Mask R-CNN // Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, 2017: 2961
    [48] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640 doi: 10.1109/TPAMI.2016.2572683
    [49] Li Y, Qi H Z, Dai J F, et al. Fully convolutional instance-aware semantic segmentation // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 4438
    [50] Lyu P Y, Liao M H, Yao C, et al. Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes // Proceedings of the European Conference on Computer Vision. Munich, 2018: 67
    [51] Liao M H, Lyu P Y, He M H, et al. Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. IEEE Trans Pattern Anal Machine Intelligence, 2019: 1
    [52] Xie E Z, Zang Y H, Shao S, et al. Scene text detection with supervised pyramid context network. Proc AAAI Conf Artif Intell, 2019, 33: 9038
    [53] Zhang Z, Zhang C Q, Shen W, et al. Multi-oriented text detection with fully convolutional networks // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 4159
    [54] Long S B, Ruan J Q, Zhang W J, et al. TextSnake: a flexible representation for detecting text of arbitrary shapes // Proceedings of the European Conference on Computer Vision. Munich, 2018: 19
    [55] He T, Huang W L, Qiao Y, et al. Accurate text localization in natural image with cascaded convolutional text network [J/OL]. arXiv preprint (2016-03-31)[2020-03-01]. https://arxiv.org/abs/1603.09423
    [56] Deng D, Liu H F, Li X L, et al. PixelLink: Detecting scene text via instance segmentation [J/OL]. arXiv preprint (2018-01-04)[2020-03-01]. https://arxiv.org/abs/1801.01315
    [57] Yang Q P, Cheng M L, Zhou W M, et al. IncepText: a new inception-text module with deformable PSROI pooling for multi-oriented scene text detection // Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, 2018: 1071
    [58] Dai Y C, Huang Z, Gao Y T, et al. Fused text segmentation networks for multi-oriented scene text detection //2018 24th International Conference on Pattern Recognition (ICPR). Beijing, 2018: 3604
    [59] Wang W H, Xie E Z, Li X, et al. Shape robust text detection with progressive scale expansion network //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 9328
    [60] Wang W H, Xie E Z, Song X G, et al. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, 2019: 8439
    [61] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770
    [62] Baek Y, Lee B, Han D, et al. Character region awareness for text detection // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 9357
    [63] Tian Z T, Shu M, Lyu P Y, et al. Learning shape-aware embedding for scene text detection // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 4229
    [64] Liao M H, Wan Z Y, Yao C, et al. Real-time scene text detection with differentiable binarization [J/OL]. arXiv preprint (2019-12-03)[2020-03-01]. https://arxiv.org/abs/1911.08947
    [65] Lyu P Y, Yao C, Wu W H, et al. Multi-oriented scene text detection via corner localization and region segmentation // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7553
    [66] Li Y, Yu Y J, Li Z F, et al. Pixel-Anchor: a fast oriented scene text detector with combined networks [J/OL]. arXiv preprint (2018-11-19)[2020-03-01]. http://export.arxiv.org/abs/1811.07432
    [67] Jiang F, Hao Z H, Liu X R. Deep scene text detection with connected component proposals [J/OL]. arXiv preprint (2017-08-17)[2020-03-01]. http://export.arxiv.org/abs/1708.05133
    [68] Qiao L, Tang S L, Cheng Z Z, et al. Text perceptron: towards end-to-end arbitrary-shaped text spotting [J/OL]. arXiv preprint (2020-02-17)[2020-03-01]. https://arxiv.org/abs/2002.06820
    [69] Zhou X Y, Yao C, Wen H, et al. EAST: an efficient and accurate scene text detector // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 2642
    [70] Li J R, Zhou Z J, Su Z Z, et al. A new parallel detection-recognition approach for end-to-end scene text extraction // 2019 International Conference on Document Analysis and Recognition (ICDAR). Sydney, 2019: 1358
    [71] He T, Tian Z, Huang W L, et al. An end-to-end TextSpotter with explicit alignment and attention // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, 2018: 5020
    [72] Kim K H, Hong S, Roh B, et al. PVANET: Deep but lightweight neural networks for real-time object detection. arXiv preprint (2019-09-30)[2020-03-01]. https://arxiv.org/abs/1608.08021
    [73] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // IEEE Conference on Computer Vision & Pattern Recognition. Las Vegas, 2016: 770
    [74] Wang F F, Zhao L M, Li X, et al. Geometry-aware scene text detection with instance transformation network // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 1381
    [75] Duan J Q, Xu Y J, Kuang Z H, et al. Geometry normalization networks for accurate scene text detection // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, 2019: 9136
    [76] Liu Z C, Lin G S, Yang S, et al. Towards robust curve text detection with conditional spatial expansion // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 7261
    [77] Liu Y L, Chen H, Shen C H, et al. ABCNet: real-time scene text spotting with adaptive Bezier-curve network [J/OL]. arXiv preprint (2020-02-25)[2020-03-01]. https://arxiv.org/abs/2002.10200v2
    [78] Wang H, Lu P, Zhang H, et al. All you need is boundary: toward arbitrary-shaped text spotting [J/OL]. arXiv preprint (2019-11-21)[2020-03-01]. https://arxiv.org/abs/1911.09550
    [79] 张艾萱. 基于深度学习的自然场景文本检测算法研究[学位论文]. 北京: 北方工业大学, 2019

    Zhang A X. Research on Natural Scene Text Detection Algorithms Based on Deep Learning [Dissertation]. Beijing: North China University of Technology, 2019
    [80] 周翔宇, 高仲合. 基于YOLO的自然场景倾斜文本定位方法研究. 计算机工程与应用, 2020, 56(9):213 doi: 10.3778/j.issn.1002-8331.1911-0032

    Zhou X Y, Gao Z H. Research on inclined text location method of natural scene based on YOLO. Comput Eng Appl, 2020, 56(9): 213 doi: 10.3778/j.issn.1002-8331.1911-0032
    [81] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 779
    [82] 牛作东, 李捍东. 引入注意力机制的自然场景文本检测算法研究. 计算机应用与软件, 2019, 36(9):198 doi: 10.3969/j.issn.1000-386x.2019.09.035

    Niu Z D, Li H D. Natural scene text detection algorithm with attention mechanism. Comput Appl Software, 2019, 36(9): 198 doi: 10.3969/j.issn.1000-386x.2019.09.035
    [83] Yuan T L, Zhu Z, Xu K, et al. Chinese text in the wild [J/OL]. arXiv preprint (2018-02-26)[2020-03-01]. https://arxiv.org/abs/1803.00085
    [84] Lucas S M, Panaretos A, Sosa L, et al. ICDAR 2003 robust reading competitions // Seventh International Conference on Document Analysis and Recognition. Edinburgh, 2003: 682
    [85] Veit A, Matera T, Neumann L, et al. COCO-Text: dataset and benchmark for text detection and recognition in natural images [J/OL]. arXiv preprint (2016-06-19)[2020-03-01]. https://arxiv.org/abs/1601.07140
    [86] Shi B G, Yao C, Liao M H, et al. ICDAR2017 competition on reading Chinese text in the wild (RCTW-17) // 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). Kyoto, 2017: 1429
    [87] Ch’ng C K, Chan C S. Total-Text: a comprehensive dataset for scene text detection and recognition // 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). Kyoto, 2017: 935
    [88] Nayef N, Yin F, Bizid I, et al. ICDAR2017 robust reading challenge on multi-lingual scene text detection and script identification-RRC-MLT // 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). Kyoto, 2017: 1454
    [89] Chng C K, Liu Y L, Sun Y P, et al. ICDAR2019 robust reading challenge on arbitrary-shaped text-RRC-ArT. // 2019 International Conference on Document Analysis and Recognition (ICDAR). Sydney, 2019: 1571
    [90] Liu Y L, Jin L W, Zhang S T, et al. Detecting curve text in the wild: new dataset and new solution. arXiv preprint (2017-12-06)[2020-3-1]. https://arxiv.org/abs/1712.02170
    [91] 王建新, 王子亚, 田萱. 基于深度学习的自然场景文本检测与识别综述. 软件学报, 2020, 31(5):1465

    Wang J X, Wang Z Y, Tian X. Review of natural scene text detection and recognition based on deep learning. J Software, 2020, 31(5): 1465
    [92] Liu Y L. Jin L W. Zhang S T, et al. Curved scene text detection via transverse and longitudinal sequence connection. Pattern Recognit, 2019, 90: 337 doi: 10.1016/j.patcog.2019.02.002
    [93] 彭碧发. 腾讯云大学大咖分享 | 解密OCR文字识别技术 [EB/OL] 腾讯云社区专栏 (2019-08-13) [2020-03-01]. https://cloud.tencent.com/developer/article/1473262

    Peng B F. Tencent cloud university big players share | decryption OCR text recognition technology [EB/OL]. Tencent Cloud Community Column (2019-08-13) [2020-03-01]. https://cloud.tencent.com/developer/article/1473262
    [94] 有道智云. 文字识别OCR服务 [EB/OL]. 有道智云·AI开放平台 (2019-12-17) [2020-03-01]. https://ai.youdao.com/product-ocr.s

    Youdao Z Y. Text recognition OCR service [EB/OL]. Youdao Intelligent Cloud·AI Open Platform (2019-12-17) [2020-03-01]. https://ai.youdao.com/product-ocr.s
    [95] 百度云. 通用文字识别 [EB/OL]. 百度智能云 (2020-02-05) [2020-03-01]. https://cloud.baidu.com/product/ocr/general

    Baidu Clound Engine. Universal text recognition [EB/OL]. Baidu Intelligent Cloud (2020-02-05) [2020-03-01]. https://cloud.baidu.com/product/ocr/general
    [96] Chuangyejun. 创蓝253-创蓝万数平台图像识别OCR技术 [EB/OL] 创蓝253专栏 (2018-07-19) [2020-03-01]. https://blog.csdn.net/chuangyejun/article/details/81113833

    Chuangyejun. Chuang Lan 253- the image recognition OCR technology of Chuanglan Myriads platform [EB/OL]. Chuang Lan 253 Column (2018-07-19) [2020-03-01]. https://blog.csdn.net/chuangyejun/article/details/81113833
    [97] ZJULearning. Pixel_link [EB/OL]. GitHub (2019-11-21) [2020-03-01]. https://github.com/ZJULearning/pixel_link
    [98] Huoyijie. AdvancedEAST [EB/OL]. GitHub (2020-4-3) [2020-03-01]. https://github.com/huoyijie/AdvancedEAST
    [99] Dengdan. Seglink [EB/OL]. GitHub (2018-5-3) [2020-03-01]. https://github.com/dengdan/seglink
    [100] Tianzhi0549. CTPN [EB/OL]. GitHub (2020-4-3) [2020-03-01]. https://github.com/tianzhi0549/CTPN
    [101] Tian Z, Huang W L, He T, et al. Detecting text in natural image with connectionist text proposal network // ECCV 2016: European Conference on Computer Vision. Amsterdam, 2016: 56
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1837
  • HTML全文浏览量:  556
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-24
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回