• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夹杂物对Q235钢耐腐蚀行为的影响

杨轶轩 阳晋 张威 王敏 李岚昕 李新

杨轶轩, 阳晋, 张威, 王敏, 李岚昕, 李新. 夹杂物对Q235钢耐腐蚀行为的影响[J]. 工程科学学报, 2020, 42(S): 27-33. doi: 10.13374/j.issn2095-9389.2020.03.25.s05
引用本文: 杨轶轩, 阳晋, 张威, 王敏, 李岚昕, 李新. 夹杂物对Q235钢耐腐蚀行为的影响[J]. 工程科学学报, 2020, 42(S): 27-33. doi: 10.13374/j.issn2095-9389.2020.03.25.s05
YANG Yi-xuan, YANG Jin, ZHANG Wei, WANG Min, LI Lan-Xin, LI Xin. Effect of inclusions on corrosion resistance of carbon steel[J]. Chinese Journal of Engineering, 2020, 42(S): 27-33. doi: 10.13374/j.issn2095-9389.2020.03.25.s05
Citation: YANG Yi-xuan, YANG Jin, ZHANG Wei, WANG Min, LI Lan-Xin, LI Xin. Effect of inclusions on corrosion resistance of carbon steel[J]. Chinese Journal of Engineering, 2020, 42(S): 27-33. doi: 10.13374/j.issn2095-9389.2020.03.25.s05

夹杂物对Q235钢耐腐蚀行为的影响

doi: 10.13374/j.issn2095-9389.2020.03.25.s05
基金项目: 中国通号“十三五”重大科技专项资助项目(2300-K1180009)
详细信息
    通讯作者:

    E-mail:worldmind@163.com

  • 中图分类号: TG172

Effect of inclusions on corrosion resistance of carbon steel

More Information
  • 摘要: 海洋环境对于金属的腐蚀具有明显的加速作用,尤其在高铁海底隧道环境中,金属比正常的服役时间变短,这种腐蚀情况下会影响高铁的安全和准点运行。基于以上背景,通过夹杂物自动扫描、钢的加速腐蚀及电化学测试对钢中的夹杂物诱发腐蚀行为进行系统分析,重点分析了高铁轨旁信号设备连接金属件(Q235)中夹杂物在盐雾环境下的腐蚀行为。结果表明:钢中主要夹杂物为氧化物、硫化物或者其复合夹杂,而这两类夹杂物对于诱发钢基体点蚀的原因不同。其中数量最多、尺寸小于5 μm类型的夹杂物为硫化物夹杂和氧硫复合类型夹杂物;数量少、尺寸大于5 μm的夹杂物为氧化物夹杂。在服役过程中,钢中硫化物夹杂易溶解脱落形成点蚀坑,而氧化物夹杂周围基体会先溶解引起夹杂物脱落形成点蚀坑,复合类夹杂物也是诱发钢发生腐蚀的因素,不同复合类型的夹杂物腐蚀方式不同,硫化物夹杂和氧硫复合夹杂对碳钢影响较大。电化学测试表明自腐蚀电位约为为−0.1 V,Q235钢本身抗腐蚀能力不强。夹杂物在腐蚀过程中参与了腐蚀,引起阳极极化曲线的波动,加快了Q235钢的腐蚀情况。研究结果对于认识和改善钢的耐腐蚀性能有指导意义。
  • 图  1  电化学测试示意图

    Figure  1.  Schematic of electrochemical testing

    图  2  不同类型夹杂物尺寸及数量

    Figure  2.  Dimension and number of different types of inclusions

    图  3  复合类夹杂物形貌图

    Figure  3.  Morphologies of composite inclusions

    图  4  不同类型夹杂物分布图

    Figure  4.  Distribution of different types of inclusions

    图  5  硫化物与氧化物夹杂腐蚀机理。(a)硫化物;(b)氧化物

    Figure  5.  Corrosion mechanisms of sulfide and oxide inclusions: (a) sulfide; (b) oxide

    图  6  复合夹杂物侵蚀后形貌特征。(a1)CaS−Al2O3侵蚀5 s;(b1)MgO−Al2O3侵蚀5 s;(a2)CaS−Al2O3侵蚀30 s;(b2)MgO−Al2O3侵蚀30 s

    Figure  6.  Corrosion morphologies of composite inclusions: (a1) CaS–Al2O3 erosion for 5 s; (b1) MgO–Al2O3 erosion for 5 s; (a2) CaS–Al2O3 erosion for 30 s; (b2) MgO–Al2O3 erosion for 30 s

    图  7  CaS−Al2O3元素面扫描图。(a)侵蚀5 s;(b)侵蚀30 s

    Figure  7.  Elements mapping of CaS–Al2O3: (a) erosion for 5 s; (b) erosion for 30 s

    图  8  Q235钢在1% NaCl溶液中的开路电位(a)及动电位极化曲线(b)

    Figure  8.  Open circuit potential (a) and dynamic polarization curve (b) of Q235 steel in 1% NaCl solution

    图  9  Q235钢在1% NaCl溶液中的阻抗Bode图(a)和阻抗Nyquist图(b)

    Figure  9.  Impedance Bode plot (a) and impedance Nyquist plot (b) of Q235 steel in 1% NaCl solution

    表  1  Q235钢化学成分(质量分数)

    Table  1.   Chemical composition of Q235 steel %

    CSiMnPS
    0.15730.41220.17890.04360.0445
    下载: 导出CSV
  • [1] 陈学群, 常万顺, 陈德斌. 碳钢中夹杂物诱发点蚀的规律和特性研究. 海军工程大学学报, 2004, 16(6):30 doi: 10.3969/j.issn.1009-3486.2004.06.006

    Chen X Q, Chang W S, Chen D B. Law and feature of pitting caused by inclusion in carbon steel. J Naval Univ Eng, 2004, 16(6): 30 doi: 10.3969/j.issn.1009-3486.2004.06.006
    [2] 马军红, 朴占龙, 王雁, 等. Q235钢中显微夹杂物行为研究. 上海金属, 2017, 39(2):55 doi: 10.3969/j.issn.1001-7208.2017.02.012

    Ma J H, Piao Z L, Wang Y, et al. Research on behavior of micro-inclusions in Q235 steel. Shanghai Met, 2017, 39(2): 55 doi: 10.3969/j.issn.1001-7208.2017.02.012
    [3] 郑万, 熊珊, 李天佑, 等. 夹杂物对低合金钢点蚀诱发敏感性的影响. 炼钢, 2017, 33(5):31

    Zheng W, Xiong S, Li T Y, et al. Effect of inclusions on pitting susceptibility in low alloy steel. Steelmaking, 2017, 33(5): 31
    [4] Avci R, Davis B H, Wolfenden M L, et al. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media. Corros Sci, 2013, 76: 267 doi: 10.1016/j.corsci.2013.06.049
    [5] 杜旭东, 王峰, 高艺, 等. 热处理工艺对Mg−7Al−1Ca−0.5Sn合金力学与腐蚀性能的影响研究. 稀有金属, 2019, 43(12):1283

    Du X D, Wang F, Gao Y, et al. Effect of heat treatment process on mechanical and corrosion properties of Mg−7Al−1Ca−0.5Sn alloy. Chin J Rare Met, 2019, 43(12): 1283
    [6] 张春亚, 张奇, 李继高, 等. 碳钢及低合金钢在氯离子溶液中夹杂物诱发点蚀位置显微腐蚀实验探讨. 冶金分析, 2014, 34(1):22

    Zhang C Y, Zhang Q, Li J G, et al. Micro-corrosion test research on pitting initiation site of the inclusions of carbon steel and low alloy steel in chlorine ion solution. Metall Anal, 2014, 34(1): 22
    [7] 张文梅, 纪红, 马通达, 等. 15% SiCp/2009Al复合材料在3.5% NaCl溶液中的腐蚀行为. 稀有金属, 2018, 42(5):516

    Zhang W M, Ji H, Ma T D, et al. Corrosion behaviors of 15% SiCp/2009Al composite in 3.5% NaCl solution. Chin J Rare Met, 2018, 42(5): 516
    [8] Ray G P, Jarman R A, Thomas J G. The influence of non-metallic inclusions on the corrosion fatigue of mild steel. Corros Sci, 1985, 25(3): 171 doi: 10.1016/0010-938X(85)90093-9
    [9] Krawiec H, Vignal V, Heintz O, et al. Influence of the dissolution of MnS inclusions under free corrosion and potentiostatic conditions on the composition of passive films and the electrochemical behaviour of stainless steels. Electrochim Acta, 2006, 51(16): 3235 doi: 10.1016/j.electacta.2005.09.015
    [10] Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3, inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corros Sci, 2018, 138: 96 doi: 10.1016/j.corsci.2018.04.007
    [11] Zhu T W, Huang F, Liu J, et al. Effects of inclusion on corrosion resistance of weathering steel in simulated industrial atmosphere. Anti-Corros Methods Mater, 2016, 63(6): 490 doi: 10.1108/ACMM-05-2015-1538
    [12] 武会宾, 王迪, 梁金明, 等. 夹杂物对低合金钢在酸性Cl溶液环境中点蚀行为的影响. 材料热处理学报, 2014, 35(12):172

    Wu H B, Wang D, Liang J M, et al. Influence of inclusion on pitting corrosion behavior of low-alloy steel for bottom plates of cargo oil tanks. Trans Mater Heat Treat, 2014, 35(12): 172
    [13] Guo J, Cheng S S, Guo H J, et al. Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium. Int J Miner Metall Mater, 2018, 25(3): 280 doi: 10.1007/s12613-018-1571-1
    [14] Li X, Bao Y P, Wang M. Peeling defects of cold rolled interstitial-free steel sheet due to inclusion movement. Ironmaking Steelmaking, 2020, 47(1): 1 doi: 10.1080/03019233.2018.1483592
    [15] Yang L, Cheng G G. Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel. Int J Miner Metall Mater, 2017, 24(8): 869 doi: 10.1007/s12613-017-1472-8
    [16] 张峰, 陈惠芬, 柴锋, 等. 夹杂物对Cr−Ni系高强度钢耐蚀性能的影响. 钢铁研究学报, 2017, 29(11):945

    Zhang F, Chen H F, Chai F, et al. Effect of inclusions on corrosion resistance of Cr−Ni high-strength steels. J Iron Steel Res, 2017, 29(11): 945
    [17] Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking. Corros Sci, 2011, 53(4): 1201 doi: 10.1016/j.corsci.2010.12.011
    [18] Li Y B, Liu J, Deng Y D, et al. Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution. J Alloys Compd, 2016, 673: 28 doi: 10.1016/j.jallcom.2016.02.224
    [19] Fushimi K, Takabatake Y, Nakanishi T, et al. Microelectrode techniques for corrosion research of iron. Electrochim Acta, 2013, 113: 741 doi: 10.1016/j.electacta.2013.03.021
    [20] Oltra R, Vignal V. Recent advances in local probe techniques in corrosion research— —Analysis of the role of stress on pitting sensitivity. Corros Sci, 2007, 49(1): 158 doi: 10.1016/j.corsci.2006.05.032
    [21] Maack B, Nilius N. In-situ optical view onto copper oxidation— —role of reactive interfaces and self-heating. Corros Sci, 2019, 159: 108112 doi: 10.1016/j.corsci.2019.108112
    [22] Dastgerdi A A, Brenna A, Ormellese M, et al. Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel. Corros Sci, 2019, 159: 108160 doi: 10.1016/j.corsci.2019.108160
    [23] Fulton G, Lunev A. Probing the correlation between phase evolution and growth kinetics in the oxide layers of tungsten using Raman spectroscopy and EBSD. Corros Sci, 2020, 162: 108221 doi: 10.1016/j.corsci.2019.108221
    [24] Diler E, Rioual S, Lescop B, et al. Chemistry of corrosion products of Zn and MgZn pure phases under atmospheric conditions. Corros Sci, 2012, 65: 178 doi: 10.1016/j.corsci.2012.08.014
    [25] Singh J K, Singh D D N. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH. Corros Sci, 2012, 56: 129 doi: 10.1016/j.corsci.2011.11.012
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  284
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-25
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回