• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中间包等离子加热的物理模拟

王勇 赵梦静 杨树峰 李京社 张贯旭 习小军

王勇, 赵梦静, 杨树峰, 李京社, 张贯旭, 习小军. 中间包等离子加热的物理模拟[J]. 工程科学学报, 2020, 42(S): 68-75. doi: 10.13374/j.issn2095-9389.2020.03.25.s16
引用本文: 王勇, 赵梦静, 杨树峰, 李京社, 张贯旭, 习小军. 中间包等离子加热的物理模拟[J]. 工程科学学报, 2020, 42(S): 68-75. doi: 10.13374/j.issn2095-9389.2020.03.25.s16
WANG Yong, ZHAO Meng-jing, YANG Shu-feng, LI Jing-she, ZHANG Guan-xu, XI Xiao-Jun. Physical simulation of tundish heated by plasma[J]. Chinese Journal of Engineering, 2020, 42(S): 68-75. doi: 10.13374/j.issn2095-9389.2020.03.25.s16
Citation: WANG Yong, ZHAO Meng-jing, YANG Shu-feng, LI Jing-she, ZHANG Guan-xu, XI Xiao-Jun. Physical simulation of tundish heated by plasma[J]. Chinese Journal of Engineering, 2020, 42(S): 68-75. doi: 10.13374/j.issn2095-9389.2020.03.25.s16

中间包等离子加热的物理模拟

doi: 10.13374/j.issn2095-9389.2020.03.25.s16
基金项目: 国家自然科学基金资助项目(52074030, 51734003)
详细信息
    通讯作者:

    E-mail:yangshufeng@ustb.edu.cn

  • 中图分类号: TF777

Physical simulation of tundish heated by plasma

More Information
  • 摘要: 为了提高实际生产中中间包等离子加热热效率,改善中间包内钢液流动状态,本文根据某钢厂中间包原型,通过物理模拟对比研究了有无等离子加热和不同等离子加热位置下中间包内温度场和流场的变化情况。研究结果表明,在无等离子加热条件下,中间包内死区比例较高,达到了36%,死区主要集中在中间包挡墙外侧上部区域;当加热位置位于挡墙外侧时,中间包内死区比例与不加热时相差不大,靠近加热位置处的温度急剧上升,挡墙内外两侧的温度差较大,中间包内整体温度分布不均匀;加热位置位于挡墙内侧时,中间包死区比例明显降低,达到29.2%,平均停留时间约增加57 s,出水口温度明显上升(约7 ℃),中间包内温度分布更均匀。
  • 图  1  中间包结构图。(a)整体结构;(b)主视图

    Figure  1.  Tundish structure: (a) overall structure; (b) main view

    图  2  实验设备示意图

    Figure  2.  Schematic diagram of experimental equipment

    图  3  A1测温方案示意图

    Figure  3.  Schematic diagram of temperature measurement in scheme A1

    图  4  A2测温方案示意图

    Figure  4.  Schematic diagram of temperature measurement in scheme A2

    图  5  不同实验方案下的RTD曲线。(a)方案A0;(b)方案A1;(c)方案A2

    Figure  5.  RTD curve under different schemes: (a) scheme A0; (b) scheme A1; (c) scheme A2

    图  6  方案A0的中间包流场图。(a)10 s;(b)30 s;(c)60 s;(d)90 s;(e)120 s;(f)180 s;(g)240 s;(h)300 s

    Figure  6.  Flow field in tundish of scheme A0: (a) 10 s; (b) 30 s; (c) 60 s; (d) 90 s; (e) 120 s; (f) 180 s; (g) 240 s; (h) 300 s

    图  7  方案A1的中间包流场图。(a)10 s;(b)30 s;(c)60 s;(d)90 s;(e)120 s;(f)180 s;(g)240 s;(h)300 s

    Figure  7.  Flow field in tundish of scheme A1: (a) 10 s; (b) 30 s; (c) 60 s; (d) 90 s; (e) 120 s; (f) 180 s; (g) 240 s; (h) 300 s

    图  8  方案A2的中间包流场图。(a)10 s;(b)30 s;(c)60 s;(d)90 s;(e)120 s;(f)180 s;(g)240 s;(h)300 s

    Figure  8.  Flow field in tundish of scheme A2: (a) 10 s; (b) 30 s; (c) 60 s; (d) 90 s; (e) 120 s; (f) 180 s; (g) 240 s; (h) 300 s

    图  9  不同实验方案下的温度场分布情况。(a)方案A1;(b)方案A2

    Figure  9.  Temperature field distribution under different schemes: (a) scheme A1; (b) scheme A2

    表  1  中间包原型与模型的主要参数

    Table  1.   Main parameters of tundish prototype and model mm

    ClassificationTop
    width
    Bottom
    width
    Top
    length
    Bottom
    length
    Inlet
    diameter
    HeightSurface height
    of overflow
    Insertion depth
    of long nozzle
    Working liquid
    level height
    Prototype14058576621607390.015551215250.01115
    Water model3512141655151822.538930462.5279
    下载: 导出CSV

    表  2  主要工艺参数及流量

    Table  2.   Main process parameters and flow rate

    Slab section/mm2Casting speed/(m·min−1)Qr/(L·min−1)Qm/(L·min−1)
    210×7000.8117.63.68
    下载: 导出CSV

    表  3  模型与原型的等离子加热参数

    Table  3.   Plasma heating parameters of model and prototype

    ClassificationPower input/WHeating zone
    area/m2
    Viscosity/
    (kg·m−1·s−1)
    Depth/
    m
    Thermal diffusivity/
    (m2·s−1)
    Heating zone
    length /m
    Average velocity of
    liquid /(m·s−1)
    Plasma heating
    number
    Model33540.0180.0010.2791.43×10−70.1100.03544773.1
    Prototype3000000.3000.0061.1157.7×10−70.6000.04544901.4
    下载: 导出CSV

    表  4  中间包等离子加热水模拟实验方案

    Table  4.   Experimental schemes of tundish plasma heating in water simulation

    SchemeHeating positionSteam flow rate/(kg·h−1)
    A0 (Non plasma heating)
    A1Inside of weir6
    A2outside of weir6
    下载: 导出CSV

    表  5  不同实验方案的流体流动特征参数

    Table  5.   Flow characteristic parameters of fluid in different schemes

    SchemeStagnation time /sPeak time /sAverage residence time /sVolume fraction / %
    Dead volume fractionDispersed plug volume fractionWell-mixed volume fraction
    A058.0120.7528.036.010.853.2
    A1127.7362.0584.729.229.641.1
    A234.3316.7477.042.221.236.5
    下载: 导出CSV
  • [1] Sahai Y. Tundish technology for casting clean steel: a review. Metall Mater Trans B, 2016, 47(4): 2095 doi: 10.1007/s11663-016-0648-3
    [2] Chang S, Zhong L C, Zou Z S. Simulation of flow and heat fields in a seven-strand tundish with gas curtain for molten steel continuous-casting. ISIJ Int, 2015, 55(4): 837 doi: 10.2355/isijinternational.55.837
    [3] Kumar A, Mazumdar D, Koria S C. Modeling of fluid flow and residence time distribution in a four-strand tundish for enhancing inclusion removal. ISIJ Int, 2008, 48(1): 38 doi: 10.2355/isijinternational.48.38
    [4] 杜亚伟, 杜海明, 杜玉兰, 等. 连铸中间包热损失影响因素的数值分析. 河南冶金, 2017, 25(4):14 doi: 10.3969/j.issn.1006-3129.2017.04.005

    Du Y W, Du H M, Du Y L, et al. Numerical analysis the influence factors of the heat loss in the continuous tundish. Henan Metall, 2017, 25(4): 14 doi: 10.3969/j.issn.1006-3129.2017.04.005
    [5] Wang Q, Wang F, Wang B, et al. Fluid flow and heat transfer in a continuous casting tundish with the channel type induction heating. J Iron Steel Res Int, 2012, 19(S2): 969
    [6] Vargas-Zamora A, Morales R D, Díaz-Cruz M, et al. Heat and mass transfer of a convective-stratified flow in a trough type tundish. Int J Heat Mass Transfer, 2003, 46(16): 3029 doi: 10.1016/S0017-9310(03)00068-1
    [7] 田建英, 张雪良, 李京社, 等. 连铸中间包等离子加热技术综述. 宽厚板, 2017, 23(2):45 doi: 10.3969/j.issn.1009-7864.2017.02.012

    Tian J Y, Zhang X L, Li J S, et al. Review of plasma heating technology for continuous casting tundish. Wide Heavy Plate, 2017, 23(2): 45 doi: 10.3969/j.issn.1009-7864.2017.02.012
    [8] 徐靖驰, 蹇华, 聂高升, 等. 感应加热技术在连铸中间包上的应用. 冶金设备, 2018(6):54 doi: 10.3969/j.issn.1001-1269.2018.06.015

    Xu J C, Jian H, Nie G S, et al. Application of induction heating technology on casting middle package. Metall Equip, 2018(6): 54 doi: 10.3969/j.issn.1001-1269.2018.06.015
    [9] 姜周华, 李晨隽, 姜永林, 等. 钢水炉外电渣加热的实验研究. 钢铁, 1995, 30(3):12

    Jiang Z H, Li C J, Jiang Y L, et al. Laboratory research on electroslag heating of molten steel in ladle. Iron Steel, 1995, 30(3): 12
    [10] 张新生, 周筠清. 电渣加热中间包钢水的数学模型及实验研究. 冶金能源, 1997, 16(2):32

    Zhang X S, Zhou Y Q. A mathematical model and simulated test of electroslag heating of liquid steel in a tundish. Energy Metall Ind, 1997, 16(2): 32
    [11] 李阳, 李亮, 陈圆圆, 等. 侧壁式感应加热中间包磁/热/流耦合模拟. 东北大学学报(自然科学版), 2017, 38(7):966

    Li Y, Li L, Chen Y Y, et al. Numerical simulation of electromagnetic-thermal-hydrodynamic field in tundish with sidewall-type induction heating. J Northeast Univ Nat Sci, 2017, 38(7): 966
    [12] 佐祥均, 阎建武, 罗利华, 等. 等离子中间罐加热技术在连铸过程中的应用. 钢铁技术, 2016(1):10

    Zuo X J, Yan J W, Luo L H, et al. Application of plasma tundish heating technology in continuous casting process. Iron Steel Technol, 2016(1): 10
    [13] Badie J M, Bertrand P, Flamant G. Temperature distribution in a pilot plasma tundish: comparison between plasma torch and graphite electrode systems. Plasma Chem Plasma Process, 2001, 21(2): 279 doi: 10.1023/A:1007004532610
    [14] Barrón-Meza M A, Barreto-Sandoval J D J, Morales R D. Physical and mathematical models of steel flow and heat transfer in a tundish heated by plasma. Metall Mater Trans B, 2000, 31(1): 63 doi: 10.1007/s11663-000-0131-y
    [15] 蒋军, 路海波, 李勤勇, 等. 中间罐等离子加热技术在青岛特钢的应用. 连铸, 2018, 43(2):7

    Jiang J, Lu H B, Li Q Y, et al. Application of tundish plasma heater. Contin Cast, 2018, 43(2): 7
    [16] Pak Y A, Filippov G A, Yusupov D I, et al. Two-strand tundish with chambers for plasma heating of liquid metal. Metallurgist, 2014, 58(7): 672
    [17] Chattopadhyay K, Isac M, Guthrie R I L. Physical and mathematical modelling of steelmaking tundish operations: a review of the last decade (1999–2009). ISIJ Int, 2010, 50(3): 331 doi: 10.2355/isijinternational.50.331
    [18] 杨树峰, 吴金强, 李京社, 等. 四流中间包控流装置优化物理模拟. 中国冶金, 2019, 29(4):81

    Yang S F, Wu J Q, Li J S, et al. Physical simulation on optimization of flow control devices in four strand tundish. China Metall, 2019, 29(4): 81
    [19] Braga B M, Tavares R P. Description of a new tundish model for treating RTD data and discussion of the communication “New insight into combined model and revised model for RTD curves in a multi-strand tundish” by Lei. Metall Mater Trans B, 2018, 49(4): 2128 doi: 10.1007/s11663-018-1295-7
    [20] Chatterjee S, Chattopadhyay K. Transient steel quality under non-isothermal conditions in a multi-strand billet caster tundish: part Ⅱ. Effect of a flow-control device. Ironmaking Steelmaking, 2017, 44(6): 413 doi: 10.1080/03019233.2016.1214015
    [21] 刘崇林, 崔衡, 李源源, 等. 双流板坯中间包流场优化的物理模拟研究. 冶金设备, 2019(3):9

    Liu C L, Cui H, Li Y Y, et al. Study on physical simulation for flow field optimization in tundish for two-strand slab. Metall Equip, 2019(3): 9
    [22] 吴光辉, 唐海燕, 肖红, 等. 通道式感应加热7流中间包流场的物理模拟. 钢铁, 2017, 52(11):20

    Wu G H, Tang H Y, Xiao H, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating. Iron Steel, 2017, 52(11): 20
    [23] Barreto-Sandoval J D J, Hills A W S, Barrón-Meza M A, et al. Physical modelling of tundish plasma heating and its mathematical interpretation. ISIJ Int, 1996, 36(9): 1174 doi: 10.2355/isijinternational.36.1174
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  205
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-25
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回