• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合定形相变材料的封装及应用研究新进展

李兴会 陈敏智 周晓燕

李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报, 2020, 42(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2020.03.26.002
引用本文: 李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报, 2020, 42(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2020.03.26.002
LI Xing-hui, CHEN Min-zhi, ZHOU Xiao-yan. Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2020.03.26.002
Citation: LI Xing-hui, CHEN Min-zhi, ZHOU Xiao-yan. Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2020.03.26.002

复合定形相变材料的封装及应用研究新进展

doi: 10.13374/j.issn2095-9389.2020.03.26.002
基金项目: 国家自然科学基金资助项目(31870549)
详细信息
    通讯作者:

    E-mail: zhouxiaoyan@njfu.edu.cn

  • 中图分类号: TB 34

Research progress in encapsulation and application of shape-stabilized composite phase-change materials

More Information
  • 摘要: 有机相变材料具有热存储密度高、自身温度和体积变化小、腐蚀性小和化学性质稳定等优点,能有效提升不可再生能源的利用率,是一种绿色节能环保材料,在新能源开发和热能储存领域起着至关重要的作用。然而,有机相变储能材料普遍存在相变过程中熔融泄漏和热导率低的问题,严重制约了相变材料的实际应用。因此,相变材料的封装定形和导热强化成为近年来的研究热点。本文针对有机相变材料普遍存在的泄漏和热导率低问题,综述了有机相变材料的封装技术和导热强化技术的基本方法及最新研究成果,并总结了复合相变储能材料的能量转换机理,浅谈了复合定形相变储能材料在建筑节能、太阳能和电子设备等领域的应用情况。最后,对未来复合定形相变储能材料发展的研究重点和方向进行了展望。
  • 图  1  木基复合相变材料的制备及性能表征[14]。(a)木基复合相变材料的制备热储存示意图;(b)相变材料浸渍前木材的微观结构;(c)相变材料浸渍后木材的微观结构

    Figure  1.  Preparation and performance of wood-based composite phase-change materials[14]: (a) schematic representation of the preparation of transparent wood for thermal energy storage; (b) SEM images of microstructure of wood before impregnation with phase-change material; (c) SEM images of microstructure of wood after impregnation with phase-change material

    图  2  二氧化硅微胶囊的制备及微观形貌[27]。(a)二氧化硅微胶囊的制备流程示意图;(b) 50%质量分数SA的微胶囊形貌;(c) 60%质量分数SA的微胶囊形貌;(d) 70%质量分数SA的微胶囊形貌;(e) 80%质量分数SA的微胶囊形貌

    Figure  2.  Preparation process and micromorphology of silica microcapsule[27]: (a) schematic of the synthesis of shape stabilized phase change materials based on stearic acid and mesoporous hollow SiO2 microspheres; (b) SEM images of SA/SiO2 with 50% mass fractions of SA; (c) SEM images of SA/SiO2 with 60% mass fractions of SA; (d) SEM images of SA/SiO2 with 70% mass fractions of SA; (e) SEM images of SA/SiO2 with 80% mass fractions of SA

    图  3  纳米储能纤维的制备过程[30]

    Figure  3.  Schematic illustration of the preparation of nanoscale-fiber energy storage[30]

    图  4  能量转换机理。(a)光热转换机理示意图;(b)电热转换示意图

    Figure  4.  Schematic of energy conversion mechanism: (a) photo-thermal conversion phase change materials (PCMs); (b) electric–thermal PCMs

  • [1] 马丽梅, 史丹, 裴庆冰. 中国能源低碳转型(2015—2050): 可再生能源发展与可行路径. 中国人口·资源与环境, 2018, 28(2):8

    Ma L M, Shi D, Pei Q B. Low-carbon transformation of China’s energy in 2015—2050: renewable energy development and feasible path. China Popul Resour Environ, 2018, 28(2): 8
    [2] Kasaeian A, Bahrami L, Pourfayaz F, et al. Experimental studies on the applications of PCMs and nano-PCMs in buildings: a critical review. Energy Build, 2017, 154: 96 doi: 10.1016/j.enbuild.2017.08.037
    [3] 王鑫, 方建华, 吴江, 等. 相变材料的封装定型技术研究进展. 化工新型材料, 2019, 47(9):58

    Wang X, Fang J H, Wu J, et al. Development of packaging technology for phase change material. New Chem Mater, 2019, 47(9): 58
    [4] Liu H, Wang X D, Wu D Z, et al. Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation. Energy, 2019, 172: 599 doi: 10.1016/j.energy.2019.01.151
    [5] Li C E, Yu H, Song Y, et al. Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings. Energy Convers Manage, 2019, 183: 791 doi: 10.1016/j.enconman.2019.01.036
    [6] 张天驰, 俞海云, 冒爱琴, 等. 有机相变储能材料导热增强方法研究进展. 过程工程学报, 2017, 17(1):201 doi: 10.12034/j.issn.1009-606X.216225

    Zhang T C, Yu H Y, Mao A Q, et al. Research advances in organic phase change materials for technology of thermal enhancement. Chin J Process Eng, 2017, 17(1): 201 doi: 10.12034/j.issn.1009-606X.216225
    [7] 魏燕红. 多功能碳气凝胶的结构与性能研究[学位论文]. 成都: 四川师范大学, 2018

    Wei Y H. Study on the Structure and Properties of Multi-functional Carbon Aerogels[Dissertation]. Chengdu: Sichuan Normal University, 2018
    [8] Yang H Y, Wang Y Z, Yu Q Q, et al. Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage. Appl Energy, 2018, 212: 455 doi: 10.1016/j.apenergy.2017.12.006
    [9] Yang H Y, Chao W X, Di X, et al. Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage. Energy Convers Manage, 2019, 200: 112029 doi: 10.1016/j.enconman.2019.112029
    [10] Yang H Y, Wang S Y, Wang X, et al. Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage. Appl Energy, 2020, 261: 114481 doi: 10.1016/j.apenergy.2019.114481
    [11] Yang H Y, Wang Y Z, Yu Q Q, et al. Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage. Energy, 2018, 159: 929 doi: 10.1016/j.energy.2018.06.207
    [12] Ma L Y, Wang Q W, Li L P. Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage. Sol Energy Mater Sol Cells, 2019, 194: 215 doi: 10.1016/j.solmat.2019.02.026
    [13] Yang Z W, Deng Y, Li J H. Preparation of porous carbonized woods impregnated with lauric acid as shape-stable composite phase change materials. Appl Therm Eng, 2019, 150: 967 doi: 10.1016/j.applthermaleng.2019.01.063
    [14] Montanari C, Li Y Y, Chen H, et al. Transparent wood for thermal energy storage and reversible optical transmittance. ACS Appl Mater Interfaces, 2019, 11(22): 20465 doi: 10.1021/acsami.9b05525
    [15] Li Y Q, Samad Y A, Polychronopoulou K, et al. From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials. J Mater Chem A, 2014, 2(21): 7759 doi: 10.1039/C4TA00839A
    [16] Wei Y H, Li J J, Sun F R, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents. Green Chem, 2018, 20(8): 1858 doi: 10.1039/C7GC03595K
    [17] Yang J, Zhang E W, Li X F, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon, 2016, 98: 50 doi: 10.1016/j.carbon.2015.10.082
    [18] 申天伟, 陆少锋, 辛成, 等. 微胶囊相变材料的研究进展. 纺织导报, 2017(1):69

    Shen T W, Lu S F, Xin C, et al. Progress in the research of microcapsule phase-change materials. China Textile Leader, 2017(1): 69
    [19] Aftab W, Huang X Y, Wu W H, et al. Nanoconfined phase change materials for thermal energy applications. Energy Environ Sci, 2018, 11(6): 1392 doi: 10.1039/C7EE03587J
    [20] 王俊霞, 王军, 黄崇杏, 等. 多壁碳纳米管/硬脂酸−十八醇@脲醛树脂微胶囊的制备及表征. 复合材料学报, 2019, 36(3):730

    Wang J X, Wang J, Huang C X, et al. Preparation and characterization of MWCNTs/stearic acid-octadecyl alcohol@urea formaldehyde resin phase change microencasules. Acta Mater Compos Sin, 2019, 36(3): 730
    [21] Lian Q S, Li K, Sayyed A A S, et al. Study on a reliable epoxy-based phase change material: facile preparation, tunable properties, and phase/microphase separation behavior. J Mater Chem A, 2017, 5(28): 14562 doi: 10.1039/C7TA02816D
    [22] Lian Q S, Li Y, Sayyed A A S, et al. Facile strategy in designing epoxy/paraffin multiple phase change materials for thermal energy storage applications. ACS Sustainable Chem Eng, 2018, 6(3): 3375 doi: 10.1021/acssuschemeng.7b03558
    [23] Zhang G H, Bon S A F, Zhao C Y. Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Sol Energy, 2012, 86(5): 1149 doi: 10.1016/j.solener.2012.01.003
    [24] Wang Y, Wang J P, Nan G H, et al. A novel method for the preparation of narrow-disperse nanoencapsulated phase change materials by phase inversion emulsification and suspension polymerization. Ind Eng Chem Res, 2015, 54(38): 9307 doi: 10.1021/acs.iecr.5b01026
    [25] Wang H, Luo J, Yang Y Y, et al. Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance. Sol Energy, 2016, 139: 591 doi: 10.1016/j.solener.2016.10.011
    [26] Zhu Y L, Liang S E, Wang H, et al. Morphological control and thermal properties of nanoencapsulated n-octadecane phase change material with organosilica shell materials. Energy Convers Manage, 2016, 119: 151 doi: 10.1016/j.enconman.2016.04.049
    [27] Fan S, Gao H Y, Dong W J, et al. Shape-stabilized phase change materials based on stearic acid and mesoporous hollow SiO2 microspheres (SA/SiO2) for thermal energy storage. Eur J Inorg Chem, 2017, 2017(14): 2138 doi: 10.1002/ejic.201601380
    [28] Yin D Z, Liu H, Ma L, et al. Fabrication and performance of microencapsulated phase change materials with hybrid shell by in situ polymerization in pickering emulsion. Polym Adv Technol, 2015, 26(6): 613 doi: 10.1002/pat.3495
    [29] Chen C Z, Zhao Y Y, Liu W M. Electrospun polyethylene glycol/cellulose acetate phase change fibers with core-sheath structure for thermal energy storage. Renewable Energy, 2013, 60: 222 doi: 10.1016/j.renene.2013.05.020
    [30] Babapoor A, Karimi G, Golestaneh S I, et al. Coaxial electro-spun PEG/PA6 composite fibers: fabrication and characterization. Appl Therm Eng, 2017, 118: 398 doi: 10.1016/j.applthermaleng.2017.02.119
    [31] Xi P, Zhao T X, Xia L, et al. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties. Sci Rep, 2017, 7: 40390 doi: 10.1038/srep40390
    [32] Chen Y, Ding H, Gao J K, et al. A novel strategy for enhancing the thermal conductivity of shape-stable phase change materials via carbon-based in situ reduction of metal ions. J Clean Prod, 2020, 243: 118627 doi: 10.1016/j.jclepro.2019.118627
    [33] Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy, 2013, 112: 1357 doi: 10.1016/j.apenergy.2013.04.050
    [34] Qian T T, Zhu S K, Wang H L, et al. Comparative study of single-walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of PEG-infiltrated phase-change material composites. ACS Sustainable Chem Eng, 2019, 7(2): 2446 doi: 10.1021/acssuschemeng.8b05335
    [35] Ling Z Y, Chen J J, Xu T, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Convers Manage, 2015, 102: 202 doi: 10.1016/j.enconman.2014.11.040
    [36] Yu S Y, Wang X D, Wu D Z. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Appl Energy, 2014, 114: 632 doi: 10.1016/j.apenergy.2013.10.029
    [37] Jiang X, Luo R L, Peng F F, et al. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy, 2015, 137: 731 doi: 10.1016/j.apenergy.2014.09.028
    [38] Zhou Y, Liu X D, Sheng D K, et al. Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage. Chem Eng J, 2018, 338: 117 doi: 10.1016/j.cej.2018.01.021
    [39] Li G Y, Zhang X T, Wang J, et al. From anisotropic graphene aerogels to electron-and photo-driven phase change composites. J Mater Chem A, 2016, 4(43): 17042 doi: 10.1039/C6TA07587H
    [40] Zhang Y A, Wang J S, Qiu J J, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. Appl Energy, 2019, 237: 83 doi: 10.1016/j.apenergy.2018.12.075
    [41] Aftab W, Mahmood A, Guo W H, et al. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater, 2019, 20: 401 doi: 10.1016/j.ensm.2018.10.014
    [42] Guo X F, Liu C, Li N, et al. Electrothermal conversion phase change composites: the case of polyethylene glycol infiltrated graphene oxide/carbon nanotube networks. Ind Eng Chem Res, 2018, 57(46): 15697 doi: 10.1021/acs.iecr.8b03093
    [43] 田国华. 相变储能建筑墙体传热特性及能耗影响研究[学位论文]. 徐州: 中国矿业大学, 2018

    Tian G H. Study on Heat Transfer Characteristics and Energy Consumption Influence of Phase Change Energy Storage Building Walls[Dissertation]. Xuzhou: China University of Mining and Technology, 2018
    [44] Wang S M, Matiašovský P, Mihálka P, et al. Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard. Energy Build, 2018, 159: 419 doi: 10.1016/j.enbuild.2017.10.080
    [45] Barzin R, Chen J J J, Young B R, et al. Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system. Appl Energy, 2015, 148: 39 doi: 10.1016/j.apenergy.2015.03.027
    [46] Silva T, Vicente R, Amaral C, et al. Thermal performance of a window shutter containing PCM: numerical validation and experimental analysis. Appl Energy, 2016, 179: 64 doi: 10.1016/j.apenergy.2016.06.126
    [47] 谢静超, 王未, 刘加平, 等. 相变木塑围护结构热工性能实验与数值模拟. 北京工业大学学报, 2014, 40(8):1174

    Xie J C, Wang W, Liu J P, et al. Experiment and numerical simulation of the thermal performance of phase change wood-plastic envelopes. J Beijing Univ Technol, 2014, 40(8): 1174
    [48] Papadimitratos A, Sobhansarbandi S, Pozdin V, et al. Evacuated tube solar collectors integrated with phase change materials. Sol Energy, 2016, 129: 10 doi: 10.1016/j.solener.2015.12.040
    [49] Kabeel A E, Khalil A, Shalaby S M, et al. Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Convers Manage, 2016, 113: 264 doi: 10.1016/j.enconman.2016.01.068
    [50] 刁彦华, 汪顺, 赵耀华, 等. 平板微热管阵列相变蓄热装置蓄/放热性能. 北京工业大学学报, 2016, 42(10):1552

    Diao Y H, Wang S, Zhao Y H, et al. Charging/discharging performance of flat micro-heat pipe array thermal storage device. J Beijing Univ Technol, 2016, 42(10): 1552
    [51] Lopez J M, Caceres G, Barrio E P D, et al. Confined melting in deformable porous media: a first attempt to explain the graphite/salt composites behaviour. Int J Heat Mass Transfer, 2010, 53(5-6): 1195 doi: 10.1016/j.ijheatmasstransfer.2009.10.025
    [52] Muratore C, Aouadi S M, Voevodin A A. Embedded phase change material microinclusions for thermal control of surfaces. Surf Coat Technol, 2012, 206(23): 4828 doi: 10.1016/j.surfcoat.2012.05.030
    [53] Tomizawa Y, Sasaki K, Kuroda A, et al. Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices. Appl Therm Eng, 2016, 98: 320 doi: 10.1016/j.applthermaleng.2015.12.056
    [54] Wu W H, Huang X Y, Li K, et al. A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion. Appl Energy, 2017, 190: 474 doi: 10.1016/j.apenergy.2016.12.159
    [55] Shen C F, Li X, Yang G Q, et al. Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management. Chem Eng J, 2020, 385: 123958 doi: 10.1016/j.cej.2019.123958
  • 加载中
图(4)
计量
  • 文章访问数:  1065
  • HTML全文浏览量:  522
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-26
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回