• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电弧炉内长电弧等离子体的数值模拟

姚聪林 朱红春 姜周华 潘涛

姚聪林, 朱红春, 姜周华, 潘涛. 电弧炉内长电弧等离子体的数值模拟[J]. 工程科学学报, 2020, 42(S): 60-67. doi: 10.13374/j.issn2095-9389.2020.04.08.s04
引用本文: 姚聪林, 朱红春, 姜周华, 潘涛. 电弧炉内长电弧等离子体的数值模拟[J]. 工程科学学报, 2020, 42(S): 60-67. doi: 10.13374/j.issn2095-9389.2020.04.08.s04
YAO Cong-lin, ZHU Hong-chun, JIANG Zhou-hua, PAN Tao. Numerical simulation of a long arc plasma in an electric arc furnace[J]. Chinese Journal of Engineering, 2020, 42(S): 60-67. doi: 10.13374/j.issn2095-9389.2020.04.08.s04
Citation: YAO Cong-lin, ZHU Hong-chun, JIANG Zhou-hua, PAN Tao. Numerical simulation of a long arc plasma in an electric arc furnace[J]. Chinese Journal of Engineering, 2020, 42(S): 60-67. doi: 10.13374/j.issn2095-9389.2020.04.08.s04

电弧炉内长电弧等离子体的数值模拟

doi: 10.13374/j.issn2095-9389.2020.04.08.s04
基金项目: 国家重点研发计划资助项目(2017YFB0304205)
详细信息
    通讯作者:

    E-mail:Jiangzh@smm.neu.edu.cn

  • 中图分类号: TF741.5

Numerical simulation of a long arc plasma in an electric arc furnace

More Information
  • 摘要: 全废钢连续加料电弧炉内长电弧作为炉内主要的能量来源,对废钢熔化及钢液升温至关重要。采用磁矢量势的磁流体动力学方法建立了电弧炉内电弧的数值模型,并基于该数值模型对电弧炉内电磁场、温度场和流场进行耦合求解,研究了电流大小、弧长对电弧炉内电弧的温度、速度、压力及气体剪切力特性的影响。结果表明,全废钢连续加料电弧炉内电弧等离子体呈“长钟型”分布,电弧柱较细长;随着电流增大,电弧有效作用范围增大,阳极表面电弧压力和气体剪切力增大;随着弧长增加,电弧有效作用范围减小,阳极表面的电弧压力和气体剪切力减小。短弧操作对熔池冲击剧烈,长弧操作熔池较为平稳,合理控制电流和弧长能有效提高电弧热效率。
  • 图  1  电弧炉电弧模拟的计算区域

    Figure  1.  Computational domain of the arc model

    图  2  电弧电流为1150 A的温度分布图

    Figure  2.  Temperature distribution with an arc current of 1150 A

    图  3  电弧电流为1150 A时距离阴极不同位置处鲍曼实验数据与模拟数据电弧等离子体速度的径向分布比对图。(a)20 mm;(b)38 mm;(c)55 mm

    Figure  3.  Comparison diagram of the radial distribution of the arc plasma velocity at different positions of the Bowman experiment data and simulation data at an arc current of 1150 A:(a) 20 mm;(b) 38 mm;(c) 55 mm

    图  4  不同电流大小对电弧温度分布的影响。(a)30 kA;(b)40 kA;(c)50 kA

    Figure  4.  Effect of different currents on the arc temperature distribution: (a) 30 kA; (b) 40 kA; (c) 50 kA

    图  5  40 kA−400 mm工艺条件下电弧速度分布

    Figure  5.  Arc velocity distribution under 40 kA−400 mm process conditions

    图  6  不同电流大小对电弧中心轴线速度分布的影响

    Figure  6.  Effect of different currents on the velocity distribution of the arc central axis

    图  7  不同电流大小对电弧作用力的影响。(a)电弧压力;(b)气体剪切力

    Figure  7.  Effect of different currents on arc force:(a) arc pressure; (b) shear stress

    图  8  不同弧长对电弧温度分布的影响。(a)300 mm;(b)400 mm;(c)500 mm

    Figure  8.  Effect of different arc lengths on the arc temperature distribution: (a) 300 mm; (b) 400 mm; (c) 500 mm

    图  9  不同弧长对电弧作用力的影响。(a)电弧压力;(b)气体剪切力

    Figure  9.  Effect of different arc lengths on arc force: (a) arc pressure; (b) shear stress

    表  1  电弧模拟边界条件

    Table  1.   Boundary conditions of the arc simulation

    BoundaryT/K$\varphi $/VA/(W·h·m−1)
    AB4130 or 1800$ - \sigma \dfrac{{\partial \varphi }}{{\partial {\textit{z}}}} = J$or 0$\dfrac{{\partial A}}{{\partial n}} = 0$
    C1800$\dfrac{{\partial \varphi }}{{\partial {\textit{z}}}}{\rm{ = }}0$$\dfrac{{\partial A}}{{\partial n}} = 0$
    CD1800$\dfrac{{\partial \varphi }}{{\partial r}}{\rm{ = }}0$0
    DE18000$\dfrac{{\partial A}}{{\partial n}} = 0$
    AE$\dfrac{{\partial T}}{{\partial r}}{\rm{ = }}0$$\dfrac{{\partial \varphi }}{{\partial r}}{\rm{ = }}0$$\dfrac{{\partial A}}{{\partial n}} = 0$
    下载: 导出CSV

    表  2  不同电弧电流下鲍曼实验数据[28]与模拟数据中等离子体流速对比

    Table  2.   Comparison of the plasma flow rate between Bowman data and simulated data at different currents

    Current/ADistance from the cathode/mm
    203855
    Bowman/(m·s−1)Simulated/(m·s−1)Bowman/(m·s−1)Simulated/(m·s−1)Bowman/(m·s−1)Simulated/(m·s−1)
    520520548230254180160
    1150140014151000942600585
    216015001449950920500733
    下载: 导出CSV
  • [1] Teng L D, Meador M, Ljungqvist P. Application of new generation electromagnetic stirring in electric arc furnace. Steel Res Int, 2017, 88(4): 1600202 doi: 10.1002/srin.201600202
    [2] Hay T, Echterhof T, Visuri V V. Development of an electric arc furnace simulator based on a comprehensive dynamic process model. Processes, 2019, 7(11): 852 doi: 10.3390/pr7110852
    [3] 何孝文. 炼钢短流程工艺国内外现状及发展趋势. 工程技术, 2016(67):268

    He X W. Current status and development trend of EAF steelmaking process at home and abroad. Eng Technol, 2016(67): 268
    [4] 朱荣, 魏光升, 董凯. 电弧炉炼钢绿色及智能化技术进展//第十一届中国钢铁年会论文集. 北京, 2017: 1

    Zhu R, Wei G S, Dong K. Development of green and intelligent technologies in electric arc furnace steelmaking processes//Proceedings of the 11th China Iron and Steel Annual Conference. Beijing, 2017: 1
    [5] 朱荣, 魏光升, 唐天平. 电弧炉炼钢流程洁净化冶炼技术. 炼钢, 2018, 34(1):10

    Zhu R, Wei G S, Tang T P. Technologies of purification production in electric arc furnace steelmaking processes. Steelmaking, 2018, 34(1): 10
    [6] Kukharev A, Bilousov V, Bilousov E, et al. The peculiarities of convective heat transfer in melt of a multiple-electrode arc furnace. Metals, 2019, 9(11): 1174 doi: 10.3390/met9111174
    [7] Odenthal H J, Kemminger A, Krause F, et al. Review on modeling and simulation of the electric arc furnace (EAF). Steel Res Int, 2018, 89(1): 1700098 doi: 10.1002/srin.201700098
    [8] Fathi A, Saboohi Y, Škrjanc I, et al. Low computational-complexity model of EAF arc-heat distribution. ISIJ Int, 2015, 55(7): 1353 doi: 10.2355/isijinternational.55.1353
    [9] 过增元, 赵文华. 电弧和热等离子体. 北京: 科学出版社, 1986

    Guo Z Y, Zhao W H. Arc and Thermal Plasma. Beijing: Science Press, 1986
    [10] 宋琛. 直流电弧等离子体喷涂Al2O3的数值模拟与实验验证[学位论文]. 长沙: 中南大学, 2014

    Song C. Numerical Simulation and Experimental Verification of DC Arc Plasma Sprayed Alumina[Dissertation]. Changsha: Central South University, 2014
    [11] Pan J J, Hu S S, Yang L J, et al. Numerical analysis of the heat transfer and material flow during keyhole plasma arc welding using a fully coupled tungsten–plasma–anode model. Acta Mater, 2016, 118: 221 doi: 10.1016/j.actamat.2016.07.046
    [12] Pan J J, Hu S S, Yang L J, et al. Simulation and analysis of heat transfer and fluid flow characteristics of variable polarity GTAW process based on a tungsten–arc-specimen coupled model. Int J Heat Mass Transfer, 2016, 96: 346 doi: 10.1016/j.ijheatmasstransfer.2016.01.014
    [13] 周前红. 直流电弧等离子体炬的数值模拟[学位论文]. 上海: 复旦大学, 2009

    Zhou Q H. Numerical Simulation of DC Arc Plasma Torch[Dissertation]. Shanghai: Fudan University, 2009
    [14] Hsu K C, Etemadi K, Pfender E. Study of the free-burning high-intensity argon arc. J Appl Phys, 1983, 54(3): 1293 doi: 10.1063/1.332195
    [15] Lowke J J, Kovitya P, Schmidt H P. Theory of free-burning arc columns including the influence of the cathode. J Phys D Appl Phys, 2000, 25(11): 1600
    [16] 樊丁, 陈剑虹, 牛尾诚夫. TIG电弧传热传质过程的数值分析. 机械工程学报, 1998, 34(2):39 doi: 10.3321/j.issn:0577-6686.1998.02.007

    Fan D, Chen J H, Ushio M. Numerical analysis of the heat and mass transfer process in TIG arc. Chin J Mech Eng, 1998, 34(2): 39 doi: 10.3321/j.issn:0577-6686.1998.02.007
    [17] 芦凤桂, 姚舜, 钱伟方. 钨极氩弧焊焊接电弧数值分析. 上海交通大学学报, 2003, 37(12):1862 doi: 10.3321/j.issn:1006-2467.2003.12.012

    Lu F G, Yao S, Qian W F. Numerical analysis on tungsten inert gas welding arc. J Shanghai Jiaotong Univ, 2003, 37(12): 1862 doi: 10.3321/j.issn:1006-2467.2003.12.012
    [18] 芦凤桂. TIG焊接电弧与熔池动态交互作用三维数值模拟[学位论文]. 上海: 上海交通大学, 2004

    Lu F G. 3D Numerical Simulation onDynamic Interaction between TIG Welding Arc and Weld Pool[Dissertation]. Shanghai: Shanghai Jiaotong University, 2004
    [19] Li L M, Li B K, Liu L C, et al. Numerical modeling of fluid flow, heat transfer and arc–melt interaction in tungsten inert gas welding. High Temp Mater Processes, 2017, 36(4): 427 doi: 10.1515/htmp-2016-0120
    [20] Wang X X, Huang J K, Huang Y, et al. Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling. Appl Therm Eng, 2017, 113: 27 doi: 10.1016/j.applthermaleng.2016.11.008
    [21] Hsu K C, Pfender E. Two-temperature modeling of the free-burning, high-intensity arc. J Appl Phys, 1983, 54(8): 4359 doi: 10.1063/1.332672
    [22] Capitelli M, Colonna G, Gorse C, et al. Transport properties of high temperature air in local thermodynamic equilibrium. Eur Phys J D, 2000, 11(2): 279 doi: 10.1007/s100530070094
    [23] 朱应波, 宋东亮, 曾昭生, 等. 直流电弧炉炼钢技术. 北京: 冶金工业出版社, 1997

    Zhu Y B, Song D L, Zeng Z S, et al. DC Electric Arc Furnace Steelmaking Technology. Beijing: Metallurgical Industry Press, 1997
    [24] Wang F, Jin Z, Zhu Z. Numerical study of dc arc plasma and molten bath in dc electric arc furnace. Ironmaking Steelmaking, 2006, 33(1): 39 doi: 10.1179/174328105X71326
    [25] Morris J C, Bach G R, Krey R U, et al. Continuum radiated power for high-temperature air and its components. AIAA J, 1966, 4(7): 1223 doi: 10.2514/3.3652
    [26] 王丰华, 金之俭, 朱子述. 直流电弧炉电弧等离子体射流的数值模拟. 高压电器, 2005, 41(4):241 doi: 10.3969/j.issn.1001-1609.2005.04.001

    Wang F H, Jin Z J, Zhu Z S. Numerical simulation of plasma in DC electric arc furnace. High Vol Apparatus, 2005, 41(4): 241 doi: 10.3969/j.issn.1001-1609.2005.04.001
    [27] 王丰华. 电弧炉建模研究及其应用[学位论文]. 上海: 上海交通大学, 2006

    Wang F H. Study of Modeling the Electric Arc Furnace and Its Application[Dissertation]. Shanghai: Shanghai Jiaotong University, 2006
    [28] Bowman B. Measurements of plasma velocity distributions in free-burning DC arcs up to 2160 A. J Phys D Appl Phys, 1972, 5(8): 1422 doi: 10.1088/0022-3727/5/8/309
    [29] 齐景伟, 胡明, 邵哲如, 等. 三维长电弧磁流体动力学数值模拟. 工业加热, 2018, 47(6):38 doi: 10.3969/j.issn.1002-1639.2018.06.011

    Qi J W, Hu M, Shao Z R, et al. Numerical simulation of three-dimensional long arc magneto-hydrodynamic. Ind Heat, 2018, 47(6): 38 doi: 10.3969/j.issn.1002-1639.2018.06.011
    [30] Choo R T C, Szekely J, Westhoff R C. Modeling of high-current arcs with emphasis on free surface phenomena in the weld pool. Weld J, 1990, 69(9): 346
    [31] 仝永博, 刘征, 罗玉镯, 等. 采用长弧操作的高阻抗电弧炉. 冶金设备, 2014(6):20 doi: 10.3969/j.issn.1001-1269.2014.06.005

    Tong Y B, Liu Z, Luo Y Z, et al. High impedance EAF of long arc operation. Metall Equip, 2014(6): 20 doi: 10.3969/j.issn.1001-1269.2014.06.005
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1147
  • HTML全文浏览量:  285
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回