• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷渣类夹杂物在结晶器钢液中成分转变的动力学模型

王举金 张立峰 陈威 王胜东 张月鑫 任英

王举金, 张立峰, 陈威, 王胜东, 张月鑫, 任英. 卷渣类夹杂物在结晶器钢液中成分转变的动力学模型[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.04.13.003
引用本文: 王举金, 张立峰, 陈威, 王胜东, 张月鑫, 任英. 卷渣类夹杂物在结晶器钢液中成分转变的动力学模型[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.04.13.003
WANG Ju-jin, ZHANG Li-feng, CHEN Wei, WANG Sheng-dong, ZHANG Yue-xin, REN Ying. Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.04.13.003
Citation: WANG Ju-jin, ZHANG Li-feng, CHEN Wei, WANG Sheng-dong, ZHANG Yue-xin, REN Ying. Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.04.13.003

卷渣类夹杂物在结晶器钢液中成分转变的动力学模型

doi: 10.13374/j.issn2095-9389.2020.04.13.003
基金项目: 国家自然科学基金资助项目(U1860206,51725402,51874032)
详细信息
    通讯作者:

    E-mail:zhanglifeng@ysu.edu.cn

  • 中图分类号: TF777.1

Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold

More Information
  • 摘要: 国内某厂镀锡板缺陷处夹杂物主要来自结晶器保护渣的卷入,但其成分与结晶器保护渣有明显差别。为了进一步研究这种成分差别的原因,建立了耦合热力学平衡和动力学扩散的结晶器卷渣类夹杂物的成分转变动力学模型,明确了卷渣类夹杂物的尺寸和密度对其成分转变的影响规律,并通过对结晶器和液相穴内的钢液流动和夹杂物运动的数值模拟研究了夹杂物在钢液中的停留时间。结果表明:结晶器保护渣卷入钢液后与钢液不断发生反应,成分会发生明显改变。卷渣类夹杂物转变为缺陷处夹杂物所需要的时间与夹杂物尺寸以及夹杂物密度有关,夹杂物的尺寸和密度越大,转变为缺陷处夹杂物成分所需的时间越长。卷渣类夹杂物转变为缺陷处夹杂物所需时间与夹杂物尺寸呈幂函数关系,与夹杂物密度呈二次函数关系。夹杂物在钢液中的平均停留时间随夹杂物直径的增大而减小,并且随着拉速的增大而减小。小尺寸夹杂物一旦被卷入钢液中,将有充足的时间转变为缺陷处的成分。大尺寸夹杂物在钢液中的平均停留时间小于成分转变时间,但最大停留时间远大于成分转变所需时间,表明部分大尺寸夹杂物依然具有充足的停留时间转变为缺陷处的成分。
  • 图  1  镀锡板缺陷处不同位置的化学成分

    Figure  1.  Composition of inclusions at defects on the tinplate

    图  2  结晶器保护渣成分和缺陷处化学成分的对比

    Figure  2.  Comparison of compositions of mold flux and inclusions at defects

    图  3  卷渣类夹杂物–钢液反应示意图

    Figure  3.  Schematic of the reaction between the inclusions and the steel

    图  4  计算得到的卷渣类夹杂物成分随时间的演变

    Figure  4.  Calculated evolution of the composition of mold-flux-entrapped inclusions over time

    图  5  模型计算的夹杂物成分和与镀锡板缺陷处成分的对比

    Figure  5.  Comparison of the calculated and experimental compositions of inclusions at defects

    图  6  不同尺寸卷渣类夹杂物成分的演变。(a)dinc=10 μm;(b)dinc=30 μm;(c)dinc=300 μm;(d)dinc=500 μm;(e)dinc=1 mm;(f)dinc=3 mm

    Figure  6.  Transformation of inclusions of different diameters entrained in the mold flux: (a) dinc=10 μm; (b) dinc=30 μm; (c) dinc=300 μm; (d) dinc=500 μm; (e) dinc=1 mm; (f) dinc=3 mm

    图  7  夹杂物转变为缺陷处化学成分所需时间与夹杂物尺寸的关系

    Figure  7.  Relationship between the size of inclusions and the time required for their transformation

    图  8  不同初始密度卷渣类夹杂物成分演变

    Figure  8.  Evolution of the composition of inclusions with different initial densities entrained with the mold flux

    图  9  转变为缺陷处夹杂物成分所需时间与夹杂物初始密度的关系

    Figure  9.  Relationship between the initial density of inclusions and the time required for their transformation

    图  10  不同拉速对夹杂物轨迹的影响。(a)1.4 m∙min−1;(b)1.8 m∙min−1

    Figure  10.  Influence of pulling speed on the trajectory of inclusions: (a) 1.4 m∙min−1;(b) 1.8 m∙min−1

    图  11  拉速为1.8 m∙min−1条件下钢液中夹杂物尺寸和平均停留时间的关系

    Figure  11.  Relationship between the size of inclusions and the average residence time at a pulling speed of 1.8 m∙min−1

    表  1  镀锡板缺陷处不同位置元素含量(质量分数)

    Table  1.   Chemical composition at different defect locations on the tinplate %

    PositionOFNaMgAlSiCaMnFe
    P129.714.467.581.995.0811.979.630.928.68
    P229.814.936.362.793.9412.7813.591.6424.15
    P337.26.23.651.052.2513.1324.241.4510.83
    P419.217.153.133.160.6911.7218.611.135.23
    P530.084.646.712.194.6213.9615.191.4521.17
    P632.387.276.333.095.5414.6112.091.2917.06
    下载: 导出CSV

    表  2  结晶器保护渣成分

    Table  2.   Composition of the mold flux %

    CompositionCaOSiO2Al2O3Fe2O3MgOK2O+Na2OCaF2
    Mass fraction28.4937.113.340.973.3110.0916.69
    下载: 导出CSV

    表  3  钢液化学成分

    Table  3.   Chemical composition of the molten steel %

    CompositionCSiMnPST.Al[Al]T.NT.O
    Mass fraction0.030.010.220.0070.0060.0470.0440.00290.0016
    Note:T.Al is total mass fraction of aluminium; T.N is total mass fraction of nitrogen; T.O is total mass fraction of oxygen.
    下载: 导出CSV

    表  4  夹杂物与钢液反应动力学模型所考虑的化学反应

    Table  4.   Chemical reactions considered in the current model

    ReactionΔGθ / (J·mol−1)Reference
    $\left[ {{\rm{Ca}}} \right]{\rm{ + }}\left[ {\rm{O}} \right]{\rm{ = }}\left( {{\rm{CaO}}} \right)$$\Delta {G^{\theta} } = - 138240.86 - 63.0T$[21]
    ${\rm{2}}\left[ {{\rm{Al}}} \right]{\rm{ + 3}}\left[ {\rm{O}} \right]{\rm{ = }}\left( {{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}} \right)$$\Delta {G^{\theta} } = - 1206220 + 390.39T$[21]
    $\left[ {{\rm{Si}}} \right]{\rm{ + 2}}\left[ {\rm{O}} \right]{\rm{ = }}\left( {{\rm{Si}}{{\rm{O}}_{\rm{2}}}} \right)$$\Delta {G^{\theta} } = - 581900 + 221.8T$[21]
    $\left[ {{\rm{Mg}}} \right]{\rm{ + }}\left[ {\rm{O}} \right]{\rm{ = }}\left( {{\rm{MgO}}} \right)$$\Delta {G^{\theta} } = - 89960 - 82.0T$[21]
    $\left[ {{\rm{Mn}}} \right]{\rm{ + }}\left[ {\rm{O}} \right]{\rm{ = }}\left( {{\rm{MnO}}} \right)$$\Delta {G^{\theta} } = 288150 - 128.3T$[21]
    下载: 导出CSV

    表  5  不同元素在钢液中的扩散系数

    Table  5.   Diffusivities of elements in the molten steel 10−9 m2∙s−1

    ElementCaAlSiMnMgO
    DM3.53.54.364.43.52.96
    下载: 导出CSV

    表  6  模型初始条件

    Table  6.   Initial conditions used in the calculations

    Initial mass fraction of steel / %CSiMnPS[Al]T.NT.O[Ca][Mg]
    0.030.010.220.0070.0060.0440.00290.00160.00010.0001
    Initial mass fraction of inclusion / %CaOSiO2Al2O3Fe2O3MgONa2OCaF2
    28.4937.113.340.973.3110.0916.69
    ParametersTsteel / ℃ρsteel / (kg∙m−3)μsteel / (Pa·s)ρinc / (kg∙m−3)dinc / μm
    150070000.00672500100
    下载: 导出CSV
  • [1] 张立峰. 钢中非金属夹杂物. 北京: 冶金工业出版社, 2019

    Zhang L F. Non-Metallic Inclusions in Steels: Fundamentals. Beijing: Metallurgical Industry Press, 2019
    [2] 张立峰. 钢中非金属夹杂物: 工业实践. 北京: 冶金工业出版社, 2019

    Zhang L F. Non-Metallic Inclusions in Steels: Industrial Practice. Beijing: Metallurgical Industry Press, 2019
    [3] 姜亚飞. 连铸板坯轧制中板的表面缺陷. 钢铁, 1998, 33(8):29

    Jiang Y F. Analysis of surface defects of medium plate rolled from continuous casting slab. Iron Steel, 1998, 33(8): 29
    [4] Yu H X, Deng X X, Wang X H, et al. Characteristics of subsurface inclusions in deep-drawing steel slabs at high casting speed. Metall Res Technol, 2015, 112(6): 608 doi: 10.1051/metal/2015043
    [5] Lan Y, Wang Y F, Yang Z Z, et al. Analyzing and control of surface inclusion defect of hot-rolled coil. Adv Mater Res, 2013, 753-755: 230 doi: 10.4028/www.scientific.net/AMR.753-755.230
    [6] 高晓杰, 李京社, 杨树峰, 等. SPHC板卷表面缺陷来源示踪研究. 河南冶金, 2014, 22(3):14 doi: 10.3969/j.issn.1006-3129.2014.03.004

    Gao X J, Li J S, Yang S F, et al. Application of tracers to investigate source of slag inclusions in surface defects of SPHC steel. Henan Metall, 2014, 22(3): 14 doi: 10.3969/j.issn.1006-3129.2014.03.004
    [7] Jiang C H, Tang D, Zhang C, et al. Morphology and metallurgical factors of line defects on surface of cold rolled 304 austenitic stainless steel sheet. Mater Res Innovations, 2014, 18(Suppl 4): S4-281
    [8] Yotsuji J, Koshihara T. Detection system for inclusion defects in hot-rolled steel plates using MFLT with two different magnetizing strengths. AIP Conf Proc, 2014, 1581: 1315
    [9] Liu S T, Hu J H, Xu Z Q, et al. Analysis on inclusion defects for titanium containing austenitic steel and related manufacturing way // The 8th Pacific Rim International Congress on Advanced Materials and Processing. Waikoloa, 2013: 2205
    [10] Kusano A, Sato N, Okimori M. Formation mechanism of a white spot defect on the tin plate steel produced by continuous cast slab. Tetsu-To-Hagane, 2000, 86(5): 315 doi: 10.2355/tetsutohagane1955.86.5_315
    [11] Zhang L F. Nucleation, growth, transport, and entrapment of inclusions during steel casting. JOM, 2013, 65(9): 1138 doi: 10.1007/s11837-013-0688-y
    [12] Wang S D, Chen W, Zhang X B, et al. Influence of fc-mold on flow pattern and entrapment of inclusions in continuous casting strand. // ICS2018-7th International Congress on Science and Technology of Steelmaking. Venice, 2018
    [13] Wang S D, Zhang L F, Wang Q Q, et al. Effect of electromagnetic parameters on the motion and entrapment of inclusions in FC-Mold continuous casting strands. Metall Res Technol, 2016, 113(2): 205 doi: 10.1051/metal/2016003
    [14] Chen W, Ren Y, Zhang L F. Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand. JOM, 2018, 70(12): 2968 doi: 10.1007/s11837-018-3118-3
    [15] Yamashita S, Iguchi M. Mechanism of mold powder entrapment caused by large argon bubble in continuous casting mold. ISIJ Int, 2001, 41(12): 1529 doi: 10.2355/isijinternational.41.1529
    [16] 姜平国, 赖朝斌. 宽板坯连铸结晶器流场的数值模拟. 工程科学学报, 2016, 38(增刊1): 50

    Jiang P G, Lai C B. Numerical simulation of the flow field in a wide slab continuous casting mold. Chin J Eng, 2016, 38(Suppl 1): 50
    [17] 吴华杰, 张漓, 徐阳, 等. 基于PIV技术的钢包临界卷渣行为水模型研究. 工程科学学报, 2016, 38(5):637

    Wu H J, Zhang L, Xu Y, et al. Water model study on critical slag entrapment behavior based on PIV technology. Chin J Eng, 2016, 38(5): 637
    [18] Ohguchi S, Robertson D G C, Deo B, et al. Simultaneous dephosphorization and desulphurization of molten pig iron. Ironmaking Steelmaking, 1984, 11(4): 202
    [19] Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 1. basic concept and application. ISIJ Int, 2013, 53(12): 2110 doi: 10.2355/isijinternational.53.2110
    [20] Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 2. condition to control the inclusion composition. ISIJ Int, 2013, 53(12): 2118 doi: 10.2355/isijinternational.53.2118
    [21] Zhang Y, Ren Y, Zhang L F. Kinetic study on compositional variations of inclusions, steel and slag during refining process. Metall Res Technol, 2018, 115(4): 415 doi: 10.1051/metal/2018059
    [22] 张莹. “钢–渣–夹杂物–耐火材料–合金–空气”六相多元体系下的钢、渣和夹杂物成分变化的动力学研究[学位论文]. 北京: 北京科技大学, 2019

    Zhang Y. Kinetic Study on Composiitoal Variations of Steel, Slag and Incluisons in a Multiphase System ofSteel-Slag -Incluison-Refractory-Alloy-Air”[Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [23] Zhang J. Coexistence theory of slag structure and its application to calculation of oxidizing capability of slag melts. J Iron Steel Res, 2003, 10(1): 1
    [24] 李松, 郑雪梅, 马爱元, 等. CaO–SiO2–Al2O3–TiO2渣系活度计算模型的建立及应用. 稀有金属, 2020, 44(5):540

    Li S, Zheng X M, Ma A Y, et al. Construction and application of activity models for CaO‒SiO2‒Al2O3‒TiO2 slag system. Chin J Rare Met, 2020, 44(5): 540
    [25] Ren Y, Zhang L F, Pistorius P C. Transformation of oxide inclusions in Type 304 Stainless Steels during heat treatment. Metall Mater Trans B, 2017, 48(5): 2281 doi: 10.1007/s11663-017-1007-8
    [26] Yang W, Guo C B, Zhang L F, et al. Evolution of oxide inclusions in Si‒Mn killed steels during hot-rolling process. Metall Mater Trans B, 2017, 48(5): 2717 doi: 10.1007/s11663-017-1025-6
    [27] Cheng G, Li W F, Zhang X G, et al. Transformation of inclusions in solid GCr15 bearing steels during heat treatment. Metals, 2019, 9(6): 642 doi: 10.3390/met9060642
    [28] Chu Y P, Li W F, Ren Y, et al. Transformation of inclusions in linepipe steels during heat treatment. Metall Mater Trans B, 2019, 50(4): 2047 doi: 10.1007/s11663-019-01593-1
    [29] Wang J J, Li W F, Ren Y, et al. Thermodynamic and kinetic analysis for transformation of oxide inclusions in solid 304 stainless steels. Steel Res Int, 2019, 90(7): 1800600 doi: 10.1002/srin.201800600
  • 加载中
计量
  • 文章访问数:  918
  • HTML全文浏览量:  381
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 网络出版日期:  2020-12-09

目录

    /

    返回文章
    返回