Crack propagation and coalescence mechanism of double-hole cumulative blasting in coal seam
-
摘要: 针对双孔聚能爆破孔间煤层裂隙扩展贯通问题,基于对双孔爆破应力波叠加效应的分析,建立双孔聚能爆破数值分析模型,研究双孔同时起爆时应力波的传播特征、煤体的应力状态、煤体裂隙扩展贯通规律以及应力波叠加效应对裂隙扩展的影响。结果表明,应力波叠加效应致使两爆破孔中间截面上部分区域及其邻域内形成均压区,迫使部分径向裂隙转向,主导爆生裂隙空白带的形成;两爆破孔间的定向裂隙相互贯通后,爆生气体相互作用促进贯通区裂隙的扩展并贯穿空白带。同时,结合煤层深孔聚能爆破现场试验发现,在两爆破孔外侧,应力波叠加效应促进裂隙的扩展,该作用随着远离爆破孔呈先增加后减小之势;在两爆破孔之间,应力波叠加效应抑制部分区域裂隙的扩展,致使两爆破孔之间不同位置处煤层增透效果有起伏变化。Abstract: This paper focuses on the radius of coal failure zones under cumulative blasting with shaped charge. Based on the analysis of the mutual superposition effect of the explosion stress waves during the simultaneous detonation of two blastholes, a numerical analysis model of the double-hole cumulative blasting with linear shaped charge was established. Additionally, the propagation characteristics of the stress wave during the simultaneous detonation of two blastholes, stress state of the coal body, mechanism of coal crack propagation and coalescence, and influence of the stress wave superposition effect on crack propagation were evaluated. Results show that the stress wave superposition effect induces the formation of a pressure equalization zone in the partial region of the middle section of the two blastholes and its adjacent regions. This occurrence forces the radial cracks of the two blastholes to turn, and they cannot connect with each other, leading to the formation of a gap blank zone between the two blastholes. After the directional cracks generated under cumulative blasting load coalesce, the collision of the explosive gases produced from the two blastholes further promotes the expansion of the cracks in the directional crack coalescence zone and eventually penetrates the gap blank zone. Field test results of deep-hole cumulative blasting in coal seams show that the explosion stress waves from the blastholes in the opposite side promotes the propagation of the blasting-induced crack on the left or right side of the two blastholes. This propagation first increases and then decreases as it moves away from the blasthole. Between the two blastholes, the stress wave superposition effect from the two blastholes inhibits the propagation of the cracks in some areas, resulting in a W-like fluctuation in the degree of improvement of the gas drainage effect at different positions in the area between the two blastholes.
-
图 9 煤层深孔聚能爆破相邻两孔同时起爆过程中应力波对两爆破孔之间裂隙扩展的影响。(a)t=1955 μs;(b)t=2320 μs;(c)t=2965 μs;(d)t=3085 μs;(e)t=4355 μs;(f)t=5630 μs
Figure 9. Effect of the stress wave on crack propagation between two blastholes during the simultaneous detonation of two blastholes: (a) t=1955 μs;(b) t=2320 μs;(c) t=2965 μs;(d) t=3085 μs;(e) t=4355 μs;(f) t=5630 μs
-
[1] 郭德勇, 赵杰超, 张超, 等. 煤层深孔聚能爆破控制孔作用机制研究. 岩石力学与工程学报, 2018, 37(4):919Guo D Y, Zhao J C, Zhang C, et al. Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam. Chin J Rock Mech Eng, 2018, 37(4): 919 [2] 褚怀保, 叶红宇, 杨小林, 等. 基于损伤累积的爆破振动传播规律试验研究. 振动与冲击, 2016, 35(2):173Chu H B, Ye H Y, Yang X L, et al. Experiments on propagation of blasting vibration based on damage accumulation. J Vib Shock, 2016, 35(2): 173 [3] Singh P K, Roy M P, Paswan R K. Controlled blasting for long term stability of pit-walls. Int J Rock Mech Min Sci, 2014, 70: 388 doi: 10.1016/j.ijrmms.2014.05.006 [4] 卢文波, 李海波, 陈明, 等. 水电工程爆破振动安全判据及应用中的几个关键问题. 岩石力学与工程学报, 2009, 28(8):1513 doi: 10.3321/j.issn:1000-6915.2009.08.001Lu W B, Li H B, Chen M, et al. Safety criteria of blasting vibration in hydropower engineering and several key problems in their application. Chin J Rock Mech Eng, 2009, 28(8): 1513 doi: 10.3321/j.issn:1000-6915.2009.08.001 [5] 李启月, 李夕兵, 范作鹏, 等. 深孔爆破一次成井技术与应用实例分析. 岩石力学与工程学报, 2013, 32(4):664 doi: 10.3969/j.issn.1000-6915.2013.04.003Li Q Y, Li X B, Fan Z P, et al. One time deep hole raise blasting technology and case study. Chin J Rock Mech Eng, 2013, 32(4): 664 doi: 10.3969/j.issn.1000-6915.2013.04.003 [6] 梁冰, 丁学丞, 孙维吉, 等. 低透气性煤层双孔预裂爆破增透数值模拟. 爆破, 2014, 31(2):84 doi: 10.3963/j.issn.1001-487X.2014.02.018Liang B, Ding X C, Sun W J, et al. Numerical simulation of increasing permeability by double hole presplitting blasting in low permeability coal seam. Blasting, 2014, 31(2): 84 doi: 10.3963/j.issn.1001-487X.2014.02.018 [7] Miao Y S, Li X J, Yan H H, et al. Research and application of a symmetric bilinear initiation system in rock blasting. Int J Rock Mech Min Sci, 2018, 102: 52 doi: 10.1016/j.ijrmms.2018.01.017 [8] Zhao J J, Zhang Y, Ranjith P G. Numerical simulation of blasting-induced fracture expansion in coal masses. Int J Rock Mech Min Sci, 2017, 100: 28 doi: 10.1016/j.ijrmms.2017.10.015 [9] Hu S B, Wang E Y, Kong X G. Damage and deformation control equation for gas-bearing coal and its numerical calculation method. J Nat Gas Sci Eng, 2015, 25: 166 doi: 10.1016/j.jngse.2015.04.039 [10] Ataei M, Kamali M. Prediction of blast-induced vibration by adaptive neuro-fuzzy inference system in Karoun 3 power plant and dam. J Vib Control, 2013, 19(12): 1906 doi: 10.1177/1077546312444769 [11] Yue Z W, Yang L Y, Wang Y B. Experimental study of crack propagation in polymethyl methacrylate material with double holes under the directional controlled blasting. Fatigue Fract Eng Mater Struct, 2013, 36(8): 827 doi: 10.1111/ffe.12049 [12] Ramulu M, Chakraborty A K, Sitharam T G. Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project – A case study. Tunnell Undergr Space Technol, 2009, 24(2): 208 doi: 10.1016/j.tust.2008.08.002 [13] 闫长斌. 基于声波频谱特征的岩体爆破累积损伤效应分析. 岩土力学, 2017, 38(9):2721Yan C B. Analysis of cumulative damage effect of rock mass blasting based on acoustic frequency spectrum characters. Rock Soil Mech, 2017, 38(9): 2721 [14] 费鸿禄, 苑俊华. 基于爆破累积损伤的边坡稳定性变化研究. 岩石力学与工程学报, 2016, 35(增刊2): 3868Fei H L, Yuan J H. Study of slope stability based on blasting cumulative damage. Chin J Rock Mech Eng, 2016, 35(Suppl 2): 3868 [15] 朱振海, 曲广建, 杨永琦, 等. 起爆时差对孔间裂缝贯穿影响的动光弹研究. 爆炸与冲击, 1991, 11(4):346Zhu Z H, Qu G J, Yang Y Q, et al. Dynamic photoelastic studies in the influence of delay ignition on the penetration of cracks between boreholes. Explos Shock Waves, 1991, 11(4): 346 [16] 杨仁树, 王雁冰, 杨立云, 等. 双孔切槽爆破裂纹扩展的动焦散实验. 中国矿业大学学报, 2012, 41(6):868Yang R S, Wang Y B, Yang L Y, et al. Dynamic caustic experimental in two borehole study of crack propagation cut blasting. J China Univ Min Technol, 2012, 41(6): 868 [17] 李清, 于强, 朱各勇, 等. 不同药量的切缝药包双孔爆破裂纹扩展规律试验. 岩石力学与工程学报, 2017, 36(9):2205Li Q, Yu Q, Zhu G Y, et al. Experimental study of crack propagation under two-hole slotted cartridge blasting with different amounts of charge. Chin J Rock Mech Eng, 2017, 36(9): 2205 [18] 魏晨慧, 朱万成, 白羽, 等. 不同节理角度和地应力条件下岩石双孔爆破的数值模拟. 力学学报, 2016, 48(4):926 doi: 10.6052/0459-1879-15-259Wei C H, Zhu W C, Bai Y, et al. Numerical simulation on two-hole blasting of rock under different joint angles and in-situ stress conditions. Chin J Theor Appl Mech, 2016, 48(4): 926 doi: 10.6052/0459-1879-15-259 [19] 郭德勇, 赵杰超, 吕鹏飞, 等. 煤层深孔聚能爆破有效致裂范围探讨. 工程科学学报, 2019, 41(5):582Guo D Y, Zhao J C, Lü P F, et al. Effective fracture zone under deep-hole cumulative blasting in coal seam. Chin J Eng, 2019, 41(5): 582 [20] 赵阳升, 冯增朝, 万志军. 岩体动力破坏的最小能量原理. 岩石力学与工程学报, 2003, 22(11):1781 doi: 10.3321/j.issn:1000-6915.2003.11.005Zhao Y S, Feng Z C, Wan Z J. Least energy priciple of dynamical failure of rock mass. Chin J Rock Mech Eng, 2003, 22(11): 1781 doi: 10.3321/j.issn:1000-6915.2003.11.005 [21] 赵阳升, 杨栋, 胡耀青, 等. 低渗透煤储层煤层气开采有效技术途径的研究. 煤炭学报, 2001, 26(5):455 doi: 10.3321/j.issn:0253-9993.2001.05.002Zhao Y S, Yang D, Hu Y Q, et al. Study on the effective technology way for mining methane in low permeability coal seam. J China Coal Soc, 2001, 26(5): 455 doi: 10.3321/j.issn:0253-9993.2001.05.002 [22] Hallquist J O. LS-DYNA Keyword User’s Manual. California: Livermore Software Technology Corporation, 2007 [23] 郭德勇, 赵杰超, 吕鹏飞, 等. 煤层深孔聚能爆破动力效应分析与应用. 工程科学学报, 2016, 38(12):1681Guo D Y, Zhao J C, Lü P F, et al. Dynamic effects of deep-hole cumulative blasting in coal seam and its application. Chin J Eng, 2016, 38(12): 1681 [24] 刘健, 刘泽功, 高魁, 等. 深孔定向聚能爆破增透机制模拟试验研究及现场应用. 岩石力学与工程学报, 2014, 33(12):2490Liu J, Liu Z G, Gao K, et al. Experimental study and application of directional focused energy blasting in deep boreholes. Chin J Rock Mech Eng, 2014, 33(12): 2490 [25] 穆朝民, 王海露, 黄文尧, 等. 高瓦斯低透气性煤体定向聚能爆破增透机制. 岩土力学, 2013, 34(9):2496Mu C M, Wang H L, Huang W Y, et al. Increasing permeability mechanism using directional cumulative blasting in coal seams with high concentration of gas and low permeability. Rock Soil Mech, 2013, 34(9): 2496 [26] 赵健健. 坚硬厚煤层分区域扰动破坏机理及弱化方法[学位论文]. 北京: 中国矿业大学(北京), 2018Zhao J J. Failure Mechanism of Hard Thick Coal under Various Types of Disturbance at the Front of Mining Face[Dissertation]. Beijing: China University of Mining & Technology (Beijing), 2018 -