• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高熵合金与非晶合金柔性材料

黄浩 张勇

黄浩, 张勇. 高熵合金与非晶合金柔性材料[J]. 工程科学学报, 2021, 43(1): 119-128. doi: 10.13374/j.issn2095-9389.2020.08.31.003
引用本文: 黄浩, 张勇. 高熵合金与非晶合金柔性材料[J]. 工程科学学报, 2021, 43(1): 119-128. doi: 10.13374/j.issn2095-9389.2020.08.31.003
HAUNG Hao, ZHANG Yong. High-entropy alloy and metallic glass flexible materials[J]. Chinese Journal of Engineering, 2021, 43(1): 119-128. doi: 10.13374/j.issn2095-9389.2020.08.31.003
Citation: HAUNG Hao, ZHANG Yong. High-entropy alloy and metallic glass flexible materials[J]. Chinese Journal of Engineering, 2021, 43(1): 119-128. doi: 10.13374/j.issn2095-9389.2020.08.31.003

高熵合金与非晶合金柔性材料

doi: 10.13374/j.issn2095-9389.2020.08.31.003
基金项目: 区域联合基金资助项目(2019B1515120020)
详细信息
    通讯作者:

    E-mail:drzhangy@ustb.edu.cn

  • 中图分类号: TG139

High-entropy alloy and metallic glass flexible materials

More Information
  • 摘要: 高熵合金与非晶合金作为新一代金属材料,具备许多优异的物理、化学及力学性能,在柔性电子领域展现出巨大的应用潜力。传统的块体高熵合金与非晶合金虽然性能优异,但由于材料本身的刚性特点无法满足可变形电子设备的柔性需求,因此需要通过一定方式如降低维度、设计微结构等赋予其柔性特征。在简述高熵合金柔性纤维的力学性能特点的基础上,介绍了高熵合金薄膜作为潜在柔性材料的制备方式与结构性能特点,总结了非晶合金薄膜应用于电子皮肤、柔性电极、微结构制作等柔性电子领域中的最新进展,最后讨论了现有工作的不足之处并对未来柔性电子的发展前景进行了展望。
  • 图  1  拉拔法制备纤维示意图

    Figure  1.  Schematic of fiber preparation by drawing methods

    图  2  Al0.3CoCrFeNi高熵合金纤维。(a)力学性能;(b)宏观视图[17]

    Figure  2.  Al0.3CoCrFeNi high-entropy alloy fibers: (a) tensile strength and ductility; (b) macroscopic views[17]

    图  3  不同Nb含量NbxCoCrCuFeNi薄膜的XRD图谱[30]

    Figure  3.  XRD patterns of the NbxCoCrCuFeNi films with different Nb atomic percentages[30]

    图  4  VNbMoTaW高熵合金薄膜在不同温度氧化1 h后的表面形貌。(a)初始沉积状态;(b)300 ℃;(c)500 ℃;(d)800 ℃[37]

    Figure  4.  Surface micrographs of VNbMoTaW HEA films after oxidation at different temperatures for 1 h: (a) As-deposited; (b) 300 ℃; (c) 500 ℃; (d) 800 ℃[37]

    图  5  Zr55Cu30Ni5Al10非晶合金电子皮肤。(a)监测手指弯曲;(b)电子皮肤照片[43]

    Figure  5.  Zr55Cu30Ni5Al10 metallic-glass electronic skin: (a) monitor movements of bending of fingers; (b) image of the electronic skin[43]

    图  6  热贴片在打开/关闭时的红外图像[50]

    Figure  6.  IR image of the heat patch with the switch turned on/off[50]

    图  7  非晶合金的微结构设计。(a)非晶弹簧[52];(b)褶皱结构[53]

    Figure  7.  Microstructure design of metallic glass: (a) wave springs[52]; (b) wrinkle structure[53]

    图  8  褶皱结构制备示意图

    Figure  8.  Schematic of wrinkle structure fabrication

    表  1  高熵合金纤维力学性能

    Table  1.   Mechanical properties of high-entropy alloy fiber

    CompositionDiameter/mmσs/MPaσb/MPaFracture elongation/%Preparation methodReference
    Al0.3CoCrFeNi1113612077.9Hot rotary forging + Hot drawing[17]
    CoCrFeNi11100110012.6Hot forging + Cold drawing[18]
    CoCrNi21100122024.5Hot rotary forging + Hot drawing[19]
    CoCrFeMnNi2.51540171010Hot forging + CTCR[20]
    CoCrFeMnNi8130013006Cold drawing[21]
    Co10Cr15Fe25Mn10Ni30V101160016002.4Cold drawing[22]
    下载: 导出CSV
  • [1] Almuslem A S, Shaikh S F, Hussain M M. Flexible and stretchable electronics for harsh-environmental applications. Adv Mater Technol, 2019, 4(9): 1900145 doi: 10.1002/admt.201900145
    [2] Wang S H, Xu J, Wang W C, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555(7694): 83 doi: 10.1038/nature25494
    [3] Quintero A V, Verplancke R, De Smet H, et al. Stretchable electronic platform for soft and smart contact lens applications. Adv Mater Technol, 2017, 2(8): 1700073 doi: 10.1002/admt.201700073
    [4] Cai L, Song L, Luan P S, et al. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep, 2013, 3: 3048 doi: 10.1038/srep03048
    [5] Jang H, Park Y J, Chen X, et al. Graphene-based flexible and stretchable electronics. Adv Mater, 2016, 28(22): 4184 doi: 10.1002/adma.201504245
    [6] Kumar D, Stoichkov V, Brousseau E, et al. High performing AgNW transparent conducting electrodes with a sheet resistance of 2.5−Ω Sq−1 based upon a roll-to-roll compatible post-processing technique. Nanoscale, 2019, 11(12): 5760 doi: 10.1039/C8NR07974A
    [7] Fan X, Nie W Y, Tsai H, et al. PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci, 2019, 6(19): 1900813 doi: 10.1002/advs.201900813
    [8] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
    [9] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A, 2004, 375-377: 213 doi: 10.1016/j.msea.2003.10.257
    [10] Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys. Sci China-Mater, 2018, 61(1): 2 doi: 10.1007/s40843-017-9195-8
    [11] Salishchev G A, Tikhonovsky M A, Shaysultanov D G, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd, 2014, 591: 11 doi: 10.1016/j.jallcom.2013.12.210
    [12] Ma S G, Zhang S F, Qiao J W, et al. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics, 2014, 54: 104 doi: 10.1016/j.intermet.2014.05.018
    [13] Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, 70: 24 doi: 10.1016/j.intermet.2015.11.002
    [14] Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold–silicon alloys. Nature, 1960, 187(4740): 869
    [15] 惠希东, 吕旷, 斯佳佳, 等. 高饱和磁化强度铁基非晶纳米晶软磁合金发展概况. 工程科学学报, 2018, 40(10):1158

    Hui X D, Lv K, Si J J, et al. Development of Fe-based amorphous and nanocrystalline alloys with high saturation flux density. Chin J Eng, 2018, 40(10): 1158
    [16] Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses. Nat Commun, 2012, 3: 609 doi: 10.1038/ncomms1619
    [17] Li D Y, Li C X, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater, 2017, 123: 285 doi: 10.1016/j.actamat.2016.10.038
    [18] Huo W Y, Fang F, Zhou H, et al. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures. Scripta Mater, 2017, 141: 125 doi: 10.1016/j.scriptamat.2017.08.006
    [19] Liu J P, Chen J X, Liu T W, et al. Superior strength-ductility CoCrNi medium-entropy alloy wire. Scripta Mater, 2020, 181: 19 doi: 10.1016/j.scriptamat.2020.02.002
    [20] Kwon Y J, Won J W, Park S H, et al. Ultrahigh-strength CoCrFeMnNi high-entropy alloy wire rod with excellent resistance to hydrogen embrittlement. Mater Sci Eng A, 2018, 732: 105 doi: 10.1016/j.msea.2018.06.086
    [21] Ma X G, Chen J, Wang X H, et al. Microstructure and mechanical properties of cold drawing CoCrFeMnNi high entropy alloy. J Alloys Compd, 2019, 795: 45 doi: 10.1016/j.jallcom.2019.04.296
    [22] Cho H S, Bae S J, Na Y S, et al. Influence of reduction ratio on the microstructural evolution and subsequent mechanical properties of cold-drawn Co10Cr15Fe25Mn10Ni30V10 high entropy alloy wires. J Alloys Compd, 2020, 821: 153526 doi: 10.1016/j.jallcom.2019.153526
    [23] Braeckman B R, Boydens F, Hidalgo H, et al. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 2015, 580: 71 doi: 10.1016/j.tsf.2015.02.070
    [24] Liao W B, Zhang H T, Liu Z Y, et al. High strength and deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy thin films fabricated by magnetron sputtering. Entropy, 2019, 21(2): 146 doi: 10.3390/e21020146
    [25] Zhang M N, Zhou X L, Yu X N, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf Coat Technol, 2017, 311: 321 doi: 10.1016/j.surfcoat.2017.01.012
    [26] Yue T M, Xie H, Lin X, et al. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. J Alloys Compd, 2014, 587: 588 doi: 10.1016/j.jallcom.2013.10.254
    [27] Hsu W L, Yang Y C, Chen C Y, et al. Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance. Intermetallics, 2017, 89: 105 doi: 10.1016/j.intermet.2017.05.015
    [28] Soare V, Burada M, Constantin I, et al. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Appl Surf Sci, 2015, 358: 533 doi: 10.1016/j.apsusc.2015.07.142
    [29] Xing Q W, Ma J, Wang C, et al. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)–(Ta, W) system. ACS Comb Sci, 2018, 20(11): 602 doi: 10.1021/acscombsci.8b00055
    [30] Braeckman B R, Depla D. Structure formation and properties of sputter deposited Nbx−CoCrCuFeNi high entropy alloy thin films. J Alloys Compd, 2015, 646: 810 doi: 10.1016/j.jallcom.2015.06.097
    [31] 闫薛卉, 张勇. 高熵薄膜和成分梯度材料. 表面技术, 2019, 48(6):98

    Yan X H, Zhang Y. High-entropy films and compositional gradient materials. Surf Technol, 2019, 48(6): 98
    [32] Cai Y P, Wang G J, Ma Y J, et al. High hardness dual-phase high entropy alloy thin films produced by interface alloying. Scripta Mater, 2019, 162: 281 doi: 10.1016/j.scriptamat.2018.11.004
    [33] Fang S, Wang C, Li C L, et al. Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films. J Alloys Compd, 2020, 820: 153388 doi: 10.1016/j.jallcom.2019.153388
    [34] Cui P P, Li W, Liu P, et al. Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films. J Alloys Compd, 2020, 834: 155063 doi: 10.1016/j.jallcom.2020.155063
    [35] Ye Q F, Feng K, Li Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl Surf Sci, 2017, 396: 1420 doi: 10.1016/j.apsusc.2016.11.176
    [36] Qiu X W. Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification. J Alloys Compd, 2018, 735: 359 doi: 10.1016/j.jallcom.2017.11.158
    [37] Chen Y Y, Hung S B, Wang C J, et al. High temperature electrical properties and oxidation resistance of V−Nb−Mo−Ta−W high entropy alloy thin films. Surf Coat Technol, 2019, 375: 854 doi: 10.1016/j.surfcoat.2019.07.080
    [38] Feng X G, Tang G Z, Gu L, et al. Preparation and characterization of TaNbTiW multi-element alloy films. Appl Surf Sci, 2012, 261: 447 doi: 10.1016/j.apsusc.2012.08.030
    [39] Pu G, Lin L W, Ang R, et al. Outstanding radiation tolerance and mechanical behavior in ultra-fine nanocrystalline Al1.5CoCrFeNi high entropy alloy films under He ion irradiation. Appl Surf Sci, 2020, 516: 146129 doi: 10.1016/j.apsusc.2020.146129
    [40] El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci Adv, 2019, 5(3): eaav2002 doi: 10.1126/sciadv.aav2002
    [41] Amjadi M, Kyung K U, Park I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater, 2016, 26(11): 1678 doi: 10.1002/adfm.201504755
    [42] Yi J, Bai H Y, Zhao D Q, et al. Piezoresistance effect of metallic glassy fibers. Appl Phys Lett, 2011, 98(24): 241917 doi: 10.1063/1.3599843
    [43] Xian H J, Cao C R, Shi J A, et al. Flexible strain sensors with high performance based on metallic glass thin film. Appl Phys Lett, 2017, 111(12): 121906 doi: 10.1063/1.4993560
    [44] Jung M, Lee E, Kim D, et al. Amorphous FeZr metal for multi-functional sensor in electronic skin. npj Flexible Electron, 2019, 3: 8 doi: 10.1038/s41528-019-0051-7
    [45] Cho J S, Jang W, Park K H, et al. Metallic amorphous alloy for long-term stable electrodes in organic sensors and photovoltaics. Org Electron, 2020, 84: 105811 doi: 10.1016/j.orgel.2020.105811
    [46] Van Toan N, Tuoi T T K, Tsai Y C, et al. Micro-fabricated presure sensor using 50 nm-thick of Pd-based metallic glass freestanding membrane. Sci Rep, 2020, 10: 10108 doi: 10.1038/s41598-020-67150-y
    [47] Li S Q, Horikawa S, Park M K, et al. Amorphous metallic glass biosensors. Intermetallics, 2012, 30: 80 doi: 10.1016/j.intermet.2012.03.030
    [48] Betz U, Olsson M K, Marthy J, et al. Thin films engineering of indium tin oxide: large area flat panel displays application. Surf Coat Technol, 2006, 200(20-21): 5751 doi: 10.1016/j.surfcoat.2005.08.144
    [49] Lin H K, Chiu S M, Cho T P, et al. Improved bending fatigue behavior of flexible PET/ITO film with thin metallic glass interlayer. Mater Lett, 2013, 113: 182 doi: 10.1016/j.matlet.2013.09.084
    [50] Lee S, Kim S W, Ghidelli M, et al. Integration of transparent supercapacitors and electrodes using nanostructured metallic glass films for wirelessly rechargeable, skin heat patches. Nano Lett, 2020, 20(7): 4872 doi: 10.1021/acs.nanolett.0c00869
    [51] Qin C L, Zheng D H, Hu Q F, et al. Flexible integrated metallic glass-based sandwich electrodes for high-performance wearable all-solid-state supercapacitors. Appl Mater Today, 2020, 19: 100539 doi: 10.1016/j.apmt.2019.100539
    [52] Panagiotopoulos N T, Georgarakis K, Jorge Jr A M, et al. Advanced ultra-light multifunctional metallic-glass wave springs. Mater Des, 2020, 192: 108770 doi: 10.1016/j.matdes.2020.108770
    [53] Xian H J, Liu M, Wang X C, et al. Flexible and stretchable metallic glass micro-and nano-structures of tunable properties. Nanotechnology, 2018, 30(8): 085705
    [54] Khang D Y, Jiang H Q, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311(5758): 208 doi: 10.1126/science.1121401
    [55] Tang J, Guo H, Zhao M M, et al. Highly stretchable electrodes on wrinkled polydimethylsiloxane substrates. Sci Rep, 2015, 5: 16527 doi: 10.1038/srep16527
    [56] Xu J S, Chen J, Zhang M, et al. Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes. Adv Electron Mater, 2016, 2(6): 1600022 doi: 10.1002/aelm.201600022
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  659
  • HTML全文浏览量:  300
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回