• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛/钢复合板及其制备应用研究现状与发展趋势

白于良 刘雪峰 王文静 杨耀华

白于良, 刘雪峰, 王文静, 杨耀华. 钛/钢复合板及其制备应用研究现状与发展趋势[J]. 工程科学学报, 2021, 43(1): 85-96. doi: 10.13374/j.issn2095-9389.2020.08.31.007
引用本文: 白于良, 刘雪峰, 王文静, 杨耀华. 钛/钢复合板及其制备应用研究现状与发展趋势[J]. 工程科学学报, 2021, 43(1): 85-96. doi: 10.13374/j.issn2095-9389.2020.08.31.007
BAI Yu-liang, LIU Xue-feng, WANG Wen-jing, YANG Yao-hua. Current status and research trends in processing and application of titanium/steel composite plate[J]. Chinese Journal of Engineering, 2021, 43(1): 85-96. doi: 10.13374/j.issn2095-9389.2020.08.31.007
Citation: BAI Yu-liang, LIU Xue-feng, WANG Wen-jing, YANG Yao-hua. Current status and research trends in processing and application of titanium/steel composite plate[J]. Chinese Journal of Engineering, 2021, 43(1): 85-96. doi: 10.13374/j.issn2095-9389.2020.08.31.007

钛/钢复合板及其制备应用研究现状与发展趋势

doi: 10.13374/j.issn2095-9389.2020.08.31.007
基金项目: 国家重点研发计划资助项目(2018YFA0707300)
详细信息
    通讯作者:

    E-mail:liuxuefengbj@163.com

  • 中图分类号: TG335.81

Current status and research trends in processing and application of titanium/steel composite plate

More Information
  • 摘要: 随着钛/钢复合板的应用领域不断拓展,市场对钛/钢复合板的尺寸和性能都提出了新的要求,现有的制备方法和工艺也面临着巨大挑战。本文从原材料情况、复合板尺寸、界面特征和力学性能等方面概述了钛/钢复合板研究现状,评述了钛/钢复合板目前的主要制备方法及其优缺点,综述了表面处理方法、热轧温度、过渡层金属和热处理工艺对钛/钢复合板界面结合质量的影响,阐述了钛/钢复合板的应用现状,指出了钛/钢复合板面临的主要问题及未来的重点研究方向。
  • 图  1  爆炸复合法装配示意图[40]

    Figure  1.  Assembly diagram of explosive composite method[40]

    图  2  小孔抽真空组坯示意图[59]

    Figure  2.  Schematic of small hole vacuum assembling[59]

    图  3  真空电子束焊接组坯热轧复合过程示意图[21]

    Figure  3.  Schematic of vacuum electron beam welding and hot rolling bonding process[21]

    图  4  不同热轧复合制备的钛/钢复合板的界面形貌及高倍形貌[25]。(a,e)850 ℃;(b,f)900 ℃;(c,g)950 ℃;(d,h)1000 ℃

    Figure  4.  Interface morphology of titanium/steel composite plate prepared at different hot rolling temperatures[25]: (a,e) 850 ℃; (b,f) 900 ℃; (c,g) 950 ℃; (d,h) 1000 ℃

    表  1  钛和钢的物理性能[2]

    Table  1.   Physical properties of titanium and steel[2]

    MaterialDensity/
    (g·cm−3)
    Melting
    point/℃
    Thermal conductivity/
    (W·m−1·K−1)
    Thermal expansion coefficient/
    (10−6·K−1)
    Specific heat/
    (J·kg−1·K−1)
    Ti4.5167713.88.2539
    Fe7.8153766.711.8482
    下载: 导出CSV

    表  2  钛/钢界面各相的晶体学信息

    Table  2.   Crystallographic information of phases in titanium/steel interface

    PhaseCrystal systemSpace grouplattice constant
    α-FeBCCIm-3ma = 0.2866 nm
    α-TiHCPP63/mmca = b = 0.2951 nm,
    c = 0.4683 nm
    β-TiBCCIm-3ma = 0.3306 nm
    TiCFCCFm-3ma = 0.4327 nm
    Fe2TiHCPP63/mmca = b = 0.4785 nm,
    c = 0.7799 nm
    FeTiBCCPm-3ma = 0.2976 nm
    下载: 导出CSV
  • [1] 段恒杰. 钛钢复合板在真空制盐装置蒸发室的应用. 钛工业进展, 1993(1):19

    Duan H J. Application of titanium/steel composite plate in evaporation chamber of vacuum salt making plant. Tit Ind Prog, 1993(1): 19
    [2] 柴希阳. 船舶与海洋工程用钛/钢复合板轧制工艺与组织性能研究[学位论文]. 北京: 清华大学, 2018

    Chai X Y. Study on Rolling Process, Microstructure and Properties of Titanium Clad Steel for Ship and Ocean Engineering [Dissertation]. Beijing: Tsinghua University, 2018
    [3] 高宝利, 李平仓, 华先锋, 等. 钛‒钢复合板在滨海电站凝汽器中的应用. 钛工业进展, 2005, 22(4):36 doi: 10.3969/j.issn.1009-9964.2005.04.010

    Gao B L, Li P C, Hua X F, et al. Ti‒steel clad plate application in steam condenser of seashore station. Tit Ind Prog, 2005, 22(4): 36 doi: 10.3969/j.issn.1009-9964.2005.04.010
    [4] 闫力. 钛钢复合板的特点及应用领域. 中国钛业, 2011(3):12

    Yan L. Behaviotsard applications of Ti/steel composite sheets. China Tit Ind, 2011(3): 12
    [5] 胡杰, 谢荣, 杜训柏. 钛钢复合板加工技术及其在船海工程中的应用. 江苏船舶, 2016, 33(6):6 doi: 10.3969/j.issn.1001-5388.2016.06.002

    Hu J, Xie R, Du X B. Processing technology of titanium steel clad plate and its application in ship and ocean engineering. Jiangsu Ship, 2016, 33(6): 6 doi: 10.3969/j.issn.1001-5388.2016.06.002
    [6] Lee M K, Lee J G, Choi Y H, et al. Interlayer engineering for dissimilar bonding of titanium to stainless steel. Mater Lett, 2010, 64(9): 1105
    [7] Chai X Y, Pan T, Chai F, et al. Interlayer engineering for titanium clad steel by hot roll bonding. J Iron Steel Res Int, 2018, 25(7): 739
    [8] Zhao D S, Yan J C, Wang C W, et al. Interfacial structure and mechanical properties of hot roll bonded joints between titanium alloy and stainless steel using copper interlayer. Sci Technol Weld Join, 2008, 13(8): 765
    [9] Sam S, Kundu S, Chatterjee S. Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: Interface microstructure and strength properties. Mater Des, 2012, 40: 237
    [10] Atasoy E, Kahraman N. Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Mater Charact, 2008, 59(10): 1481
    [11] Deng Y Q, Sheng G M, Xu C. Evaluation of the microstructure and mechanical properties of diffusion bonded joints of titanium to stainless steel with a pure silver interlayer. Mater Des, 2013, 46: 84
    [12] 王金友, 葛志明, 周彦邦. 航空用钛合金. 上海: 上海科学技术出版社, 1985

    Wang J Y, Ge Z M, Zhou Y B. Aeronautical Titanium Alloy. Shanghai: Shanghai Scientific & Technical Publishers, 1985
    [13] 王怀柳. 钛及钛合金在船舶工业的应用现状及发展. 特钢技术, 2013, 19(4):1 doi: 10.3969/j.issn.1674-0971.2013.04.001

    Wang H L. Application status and development of titanium and titanium alloy in shipbuilding industry. Spec Steel Technol, 2013, 19(4): 1 doi: 10.3969/j.issn.1674-0971.2013.04.001
    [14] 邢淑仪, 王世洪. 铝合金和钛合金. 北京: 机械工业出版社, 1987

    Xing S Y, Wang S H. Aluminum and Titanium Alloys. Beijing: China Machine Press, 1987
    [15] Song T F, Jiang X S, Shao Z Y, et al. Microstructure and mechanical properties of vacuum diffusion bonded joints between Ti‒6Al‒4V titanium alloy and AISI316L stainless steel using Cu/Nb multi-interlayer. Vacuum, 2017, 145: 68
    [16] Kundu S, Chatterjee S. Effect of bonding temperature on interface microstructure and properties of titanium-304 stainless steel diffusion bonded joints with Ni interlayer. Mater Sci Technol, 2006, 22(10): 1201
    [17] Yu C, Qi Z C, Yu H, et al. Microstructural and mechanical properties of hot roll bonded titanium alloy/low carbon steel plate. J Mater Eng Perform, 2018, 27(4): 1664
    [18] Xie M X, Zhang L J, Zhang G F, et al. Microstructure and mechanical properties of CP-Ti/X65 bimetallic sheets fabricated by explosive welding and hot rolling. Mater Des, 2015, 87: 181
    [19] Zhao D S, Yan J C, Wang Y, et al. Relative slipping of interface of titanium alloy to stainless steel during vacuum hot roll bonding. Mater Sci Eng A, 2009, 499(1-2): 282
    [20] 刘润生, 任连宝, 汪汉臣, 等. 大面积、薄覆层钛/钢复合板爆炸‒轧制工艺研究. 稀有金属快报, 2005, 24(1):18

    Liu R S, Ren L B, Wang H C, er al. Study on explosive-rolling process of large-scale titanium/steel plate with thin cladding. Rare Met Lett, 2005, 24(1): 18
    [21] 骆宗安, 杨德翰, 谢广明, 等. 真空制坯热轧钛/钢复合板工艺及性能. 钢铁研究学报, 2019, 31(2):213

    Luo Z A, Yang D H, Xie G M, et al. Production process and performance of titanium-steel vacuum roll-cladding plates. J Iron Steel Res, 2019, 31(2): 213
    [22] 黄金昌. NKK开发钛钢轧制复合板. 稀有金属快报, 2002(6):3

    Huang J C. NKK develops titanium steel rolling clad plate. Rare Met Lett, 2002(6): 3
    [23] 蒋淑英, 李世春. Ti‒Fe系金属间化合物价电子结构与性能分析. 稀有金属材料与工程, 2011, 40(1):36

    Jiang S Y, Li S C. Analysis on valence electron structures and properties of intermetallic compounds in Ti‒Fe system. Rare Met Mater Eng, 2011, 40(1): 36
    [24] Rajabi A, Ghazali M J, Daud A R. Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet: A review. Mater Des, 2015, 67: 95
    [25] 柴希阳, 师仲然, 柴锋, 等. 加热温度对轧制钛/钢复合板组织与性能的影响. 稀有金属材料与工程, 2019, 48(8):2701

    Chai X Y, Shi Z R, Chai F, et al. Effect of heating temperature on microstructure and mechanical properties of titanium clad steel by hot roll bonding. Rare Met Mater Eng, 2019, 48(8): 2701
    [26] Jiang H T, Yan X Q, Liu J X, et al. Effect of heat treatment on microstructure and mechanical property of Ti-steel explosive-rolling clad plate. Trans Nonferrous Met Soc China, 2014, 24(3): 697
    [27] 杨德翰, 骆宗安, 谢广明, 等. 表面处理方式对钛/钢复合板界面结合性能的影响. 东北大学学报(自然科学版), 2018, 39(10):1396

    Yang D H, Luo Z A, Xie G M, et al. Influence of surface treatment on interface bonding properties of titanium/steel composite plate. J Northeast Univ Nat Sci, 2018, 39(10): 1396
    [28] Yang D H, Luo Z A, Xie G M, et al. Effect of vacuum level on microstructure and mechanical properties of titanium-steel vacuum roll clad plates. J Iron Steel Res Int, 2018, 25(1): 72
    [29] Ghosh M, Das S, Banarjee P S, et al. Variation in the reaction zone and its effects on the strength of diffusion bonded titanium–stainless steel couple. Mater Sci Eng A, 2005, 390(1-2): 217
    [30] Kundu S, Chatterjee S. Diffusion bonding between commercially pure titanium and micro-duplex stainless steel. Mater Sci Eng A, 2008, 480(1-2): 316
    [31] Yu C, Xiao H, Yu H, et al. Mechanical properties and interfacial structure of hot-roll bonding TA2/Q235B plate using DT4 interlayer. Mater Sci Eng A, 2017, 695: 120
    [32] Song J, Kostka A, Veehmayer M, et al. Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. Mater Sci Eng A, 2011, 528(6): 2641
    [33] Liu J X, Zhao A M, Jiang H T, et al. Effect of interface morphology on the mechanical properties of titanium clad steel plates. Int J Miner Metall Mater, 2012, 19(5): 404
    [34] Xie M X, Shang X T, Zhang L J, et al. Interface characteristic of explosive-welded and hot-rolled TA1/X65 bimetallic plate. Metals, 2018, 8(3): 159
    [35] Liu J G, Cai W C, Liu L, et al. Investigation of interfacial structure and mechanical properties of titanium clad steel sheets prepared by a brazing-rolling process. Mater Sci Eng A, 2017, 703: 386
    [36] Mudali U K, Rao B M A, Shanmugam K, et al. Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel. J Nucl Mater, 2003, 321(1): 40
    [37] 王敬忠, 颜学柏, 王韦琪, 等. 轧制钛‒钢复合板工艺综述. 材料导报, 2005, 19(4):61 doi: 10.3321/j.issn:1005-023X.2005.04.017

    Wang J Z, Yan X B, Wang W Q, et al. Summarization of the rolling Ti‒steel composite plates process. Mater Rev, 2005, 19(4): 61 doi: 10.3321/j.issn:1005-023X.2005.04.017
    [38] 王敬忠, 颜学柏, 王韦琪, 等. 带夹层材料的爆炸‒轧制钛钢复合板工艺研究. 稀有金属材料与工程, 2010, 39(2):309

    Wang J Z, Yan X B, Wang W Q, et al. Titanium cladding steel plates with interlayer by explosion and rolling bonding. Rare Met Mater Eng, 2010, 39(2): 309
    [39] Ha J S, Hong S I. Deformation and fracture of Ti/439 stainless steel clad composite at intermediate temperatures. Mater Sci Eng A, 2016, 651: 805
    [40] 祖国胤. 层状金属复合材料制备理论与技术. 沈阳: 东北大学出版社, 2013

    Zu G Y. Theories and Technologies of Preparation Layered Metal Composite. Shenyang: Northeastern University Press, 2013
    [41] Prasanthi T N, Ravikirana C S, Saroja S. Explosive cladding and post-weld heat treatment of mild steel and titanium. Mater Des, 2016, 93: 180
    [42] Zu G Y, Sun X, Zhang J H. Interfacial bonding mechanism and mechanical performance of Ti/steel bimetallic clad sheet produced by explosive welding and annealing. Rare Met Mater Eng, 2017, 46(4): 906
    [43] Manikandan P, Hokamoto K, Deribas A A, et al. Explosive welding of titanium/stainless steel by controlling energetic conditions. Mater Trans, 2006, 47(8): 2049
    [44] Mousavi S A A A, Sartangi P F. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel. Mater Des, 2009, 30(3): 459
    [45] Manikandan P, Hokamoto K, Fujita M, et al. Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel. J Mater Process Technol, 2008, 195(1-3): 232
    [46] Findik F. Recent developments in explosive welding. Mater Des, 2011, 32(3): 1081
    [47] 江海涛, 阎晓倩, 刘继雄, 等. 钛‒钢爆炸复合板热处理过程中的扩散行为及数学模型. 稀有金属材料与工程, 2015, 44(4):972

    Jiang H T, Yan X Q, Liu J X, et al. Diffusion behavior and mathematical model of Ti‒steel explosive clad plate during heat treatment. Rare Met Mater Eng, 2015, 44(4): 972
    [48] Rao N V, Sarma D S, Nagarjuna S, et al. Influence of hot rolling and heat treatment on structure and properties of HSLA steel explosively clad with austenitic stainless steel. Mater Sci Technol, 2009, 25(11): 1387
    [49] Jiang H T, Yan X Q, Liu J X, et al. Influence of asymmetric rolling parameters on the microstructure and mechanical properties of titanium explosive clad plate. Rare Met Mater Eng, 2014, 43(11): 2631
    [50] Orhan N, Khan T I, Eroğlu M. Diffusion bonding of a microduplex stainless steel to Ti–6Al–4V. Scripta Mater, 2001, 45(4): 441
    [51] Ghosh M, Chatterjee S. Characterization of transition joints of commercially pure titanium to 304 stainless steel. Mater Charact, 2002, 48(5): 393
    [52] Ghosh M, Chatterjee S. Diffusion bonded transition joints of titanium to stainless steel with improved properties. Mater Sci Eng A, 2003, 358(1-2): 152
    [53] Kundu S, Ghosh M, Laik A, et al. Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer. Mater Sci Eng A, 2005, 407(1-2): 154
    [54] Eroglu M, Khan T I, Orhan N. Diffusion bonding between Ti‒6Al‒4V alloy and microduplex stainless steel with copper interlayer. Mater Sci Technol, 2002, 18(1): 68
    [55] Kundu S, Chatterjee S. Interfacial microstructure and mechanical properties of diffusion-bonded titanium–stainless steel joints using a nickel interlayer. Mater Sci Eng A, 2006, 425(1-2): 107
    [56] He P, Yue X, Zhang J H. Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer. Mater Sci Eng A, 2008, 486(1-2): 171
    [57] Kundu S, Chatterjee S. Evolution of interface microstructure and mechanical properties of titanium/304 stainless steel diffusion bonded joint using Nb interlayer. ISIJ Int, 2010, 50(10): 1460
    [58] Kundu S, Sam S, Mishra B, et al. Diffusion bonding of microduplex stainless steel and Ti alloy with and without interlayer: interface microstructure and strength properties. Metall Mater Trans A, 2014, 45(1): 371
    [59] 余超, 吴宗河, 郭子楦, 等. 热轧钛/钢复合板显微组织和性能. 钢铁, 2018, 53(4):42

    Yu C, Wu Z H, Guo Z X, et al. Microstructure and properties of hot-rolled bonded titanium clade steel plate. Iron Steel, 2018, 53(4): 42
    [60] Wang C Y, Jiang Y B, Xie J X, et al. Effect of the steel sheet surface hardening state on interfacial bonding strength of embedded aluminum-steel composite sheet produced by cold roll bonding process. Mater Sci Eng A, 2016, 652: 51
    [61] Tang C, Liu Z, Zhou D, et al. Surface treatment with the cold roll bonding process for an aluminum alloy and mild steel. Strength Mater, 2015, 47(1): 150
    [62] 刘雪峰, 白于良, 李晶琨, 等. 冷轧成形钛/钢层状复合板界面结合强度的影响因素. 材料工程, 2020, 48(7):119

    Liu X F, Bai Y L, Li J K, et al. Influence factors of interfacial bonding strength of cold rolled titanium/steel laminated composites plates. J Mater Eng, 2020, 48(7): 119
    [63] Qin B, Sheng G M, Huang J W, et al. Phase transformation diffusion bonding of titanium alloy with stainless steel. Mater Charact, 2006, 56(1): 32
    [64] Kundu S, Ghosh M, Chatterjee S. Diffusion bonding of commercially pure titanium and 17-4 precipitation hardening stainless steel. Mater Sci Eng A, 2006, 428(1-2): 18
    [65] Li B X, Chen Z J, He W J, et al. Effect of interlayer material and rolling temperature on microstructures and mechanical properties of titanium/steel clad plates. Mater Sci Eng A, 2019, 749: 241
    [66] Luo Z A, Wang G L, Xie G M, et al. Interfacial microstructure and properties of a vacuum hot roll-bonded titanium-stainless steel clad plate with a niobium interlayer. Acta Metall Sin-Engl Lett, 2013, 26(6): 754
    [67] Zhao D S, Yan J C, Liu Y J, et al. Interfacial structure and mechanical properties of hot-roll bonded joints between titanium alloy and stainless steel using niobium interlayer. Trans Nonferrous Met Soc China, 2014, 24(9): 2839
    [68] Yan J C, Zhao D S, Wang C W, et al. Vacuum hot roll bonding of titanium alloy and stainless steel using nickel interlayer. Mater Sci Technol, 2009, 25(7): 914
    [69] Rahman A H M E, Cavalli M N. Strength and microstructure of diffusion bonded titanium using silver and copper interlayers. Mater Sci Eng A, 2010, 527(20): 5189
    [70] 陈泽军, 周廷, 李博新, 等. 钒中间层钛/钢复合板结合界面结构与力学性能. 塑性工程学报, 2019, 26(1):188

    Chen Z J, Zhou T, Li B X, et al. Interfacial structure and mechanical properties of titanium clad steel plates with vanadium interlayer. J Plast Eng, 2019, 26(1): 188
    [71] Yang D H, Luo Z A, Xie G M, et al. Interfacial microstructure and properties of a vacuum roll-cladding titanium-steel clad plate with a nickel interlayer. Mater Sci Eng A, 2019, 753: 49
    [72] 宋品玲, 叶建林, 张成. 大型钛钢复合板设备制造过程中的质量控制技术. 四川兵工学报, 2012, 33(11):80

    Song P L, Ye J L, Zhang C. Quality control technology in manufacturing process of large titanium steel clad plate equipment. J Sichuan Military Technol, 2012, 33(11): 80
    [73] 张秀锋. 大型钛钢复合板塔器泄漏原因分析及现场返修措施. 化工设备与管道, 2016, 53(5):15 doi: 10.3969/j.issn.1009-3281.2016.05.005

    Zhang X F. Cause analysis of leakage occurred in large titanium clad steel column and onsite repairing measures. Process Equip Pip, 2016, 53(5): 15 doi: 10.3969/j.issn.1009-3281.2016.05.005
    [74] 欧阳灿. 湿法冶金加压酸浸钛钢复合板反应釜设计探讨. 中国有色冶金, 2019(5):65 doi: 10.3969/j.issn.1672-6103.2019.05.017

    Ouyang C. Discussion on the design of pressure acid leaching titanium steel composite board reactor for hydrometallurgy. China Nonferrous Metall, 2019(5): 65 doi: 10.3969/j.issn.1672-6103.2019.05.017
    [75] 张成, 孙万仓. 钛制换热器结构的分析和设计优化. 钛工业进展, 2016, 33(4):40

    Zhang C, Sun W C. Structure analysis and optimization of titanium heat exchanger. Tit Ind Prog, 2016, 33(4): 40
    [76] 夏宜岑. 钛制压力容器设计中的问题. 化工管理, 2018(12):196 doi: 10.3969/j.issn.1008-4800.2018.12.160

    Xia Y C. Problems in the design of titanium pressure vessels. Chem Enterprise Manage, 2018(12): 196 doi: 10.3969/j.issn.1008-4800.2018.12.160
    [77] 陈襄颐, 郑宝山. 大型钛钢复合板压力容器的设计. 化工设备与管道, 2010, 47(4):1 doi: 10.3969/j.issn.1009-3281.2010.04.001

    Chen X Y, Zheng B S. Design of large pressure vessel manufactured by titanium cladding steel plate. Process Equip Pip, 2010, 47(4): 1 doi: 10.3969/j.issn.1009-3281.2010.04.001
    [78] 吕刚. 关于火电厂烟囱钛钢复合板制造及施工注意事项. 世界有色金属, 2017(13):273

    Lü G. About the manufacture and construction of thermal power plant chimney clad plate note. World Nonferrous Met, 2017(13): 273
    [79] 王礼营, 谢刚, 王茹, 等. 火电厂脱硫烟囱用钛/钢复合板钛覆层腐蚀试验研究. 失效分析与预防, 2017, 12(4):222 doi: 10.3969/j.issn.1673-6214.2017.04.004

    Wang L Y, Xie G, Wang R, et al. Corrosion resistance of titanium/steel clad plates for desulphurization chimney of power plants. Fail Anal Prev, 2017, 12(4): 222 doi: 10.3969/j.issn.1673-6214.2017.04.004
    [80] Su H, Luo X B, Chai F, et al. Manufacturing technology and application trends of titanium clad steel plates. J Iron Steel Res Int, 2015, 22(11): 977
    [81] 卢洪伟, 武桂彬, 樊新利. 电厂钛钢复合板烟囱内筒焊接质量控制. 河北电力技术, 2015, 34(增刊): 19

    Lu H W, Wu G B, Fan X L. Welding quality management of titanium clad steel plate chimney tube in power plant. Hebei Electr Power, 2015, 34(Suppl): 19
    [82] 吴静怡. 中间层及热处理对热轧钛‒钢复合界面组织及结合性能的影响研究[学位论文]. 北京: 钢铁研究总院, 2017

    Wu J Y. Effect of Interlayers and Heat Treatments on Interfacial Microstructure and Bonding Properties of Hot Rolled Titanium-Steel Clad Plate [Dissertation]. Beijing: Central Iron & Steel Research Institute, 2017
    [83] 吴全兴. 钛钢复合材在超大型海洋浮式构筑物上的适用研究. 钛工业进展, 1997(3):27

    Wu Q X. Study on the application of titanium steel composite in super large floating structure. Tit Ind Prog, 1997(3): 27
    [84] Sahasrabudhe H, Harrison R, Carpenter C, et al. Stainless steel to titanium bimetallic structure using LENS™. Addit Manuf, 2015, 5: 1
    [85] Miriyev A, Stern A, Tuval E, et al. Titanium to steel joining by spark plasma sintering (SPS) technology. J Mater Process Technol, 2013, 213(2): 161
    [86] Kim K H, Watanabe M, Mitsuishi K, et al. Impact bonding and rebounding between kinetically sprayed titanium particle and steel substrate revealed by high-resolution electron microscopy. J Phys D Appl Phys, 2009, 42(6): 065304
    [87] Lee J G, Hong S J, Lee M K, et al. High strength bonding of titanium to stainless steel using an Ag interlayer. J Nucl Mater, 2009, 395(1-3): 145
    [88] Elrefaey A, Tillmann W. Evaluation of transient liquid phase bonding between titanium and steel. Adv Eng Mater, 2009, 11(7): 556
    [89] 曾周燏, 王光磊, 江姗, 等. 真空轧制钛/钢复合板的组织与性能. 宽厚板, 2016, 22(5):6 doi: 10.3969/j.issn.1009-7864.2016.05.002

    Zeng Z Y, Wang G L, Jiang S, et al. Microstructure and mechanical properties of titanium clad steel plate by vacuum rolling cladding. Wide Heavy Plate, 2016, 22(5): 6 doi: 10.3969/j.issn.1009-7864.2016.05.002
    [90] 蒋健博, 王长顺, 及玉梅, 等. TA2/Q345B钛钢复合板复合界面缺陷分析. 鞍钢技术, 2018(4):21 doi: 10.3969/j.issn.1006-4613.2018.04.006

    Jiang J B, Wang C S, Ji Y M, et al. Analysis on defects at composite interface of TA2/Q345B titanium clad steel plate. Angang Technol, 2018(4): 21 doi: 10.3969/j.issn.1006-4613.2018.04.006
    [91] 刘雪峰, 王怀柳, 白于良, 等. 一种高性能钛/钢双金属复合板的制备方法: 中国专利, CN201910954923.3. 2020-1-10

    Liu X F, Wang H L, Bai Y L, et al. A Preparation Method of High Performance Titanium/Steel Bimetal Composite Plate: China Patent, CN201910954923.3. 2020-1-10
    [92] 刘雪峰, 石章智, 白于良, 等. 一种异种金属界面实现强冶金结合的制备方法: 中国专利, CN201810507752.5. 2018-11-16

    Liu X F, Shi Z Z, Bai Y L, et al. A Preparation Method of Strong Metallurgical Bonding between Dissimilar Metals: China Patent, CN201810507752.5. 2018-11-16
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  604
  • HTML全文浏览量:  231
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回